• Title/Summary/Keyword: automation algorithm

Search Result 1,037, Processing Time 0.021 seconds

Face Detection Using Pixel Direction Code and Look-Up Table Classifier (픽셀 방향코드와 룩업테이블 분류기를 이용한 얼굴 검출)

  • Lim, Kil-Taek;Kang, Hyunwoo;Han, Byung-Gil;Lee, Jong Taek
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.261-268
    • /
    • 2014
  • Face detection is essential to the full automation of face image processing application system such as face recognition, facial expression recognition, age estimation and gender identification. It is found that local image features which includes Haar-like, LBP, and MCT and the Adaboost algorithm for classifier combination are very effective for real time face detection. In this paper, we present a face detection method using local pixel direction code(PDC) feature and lookup table classifiers. The proposed PDC feature is much more effective to dectect the faces than the existing local binary structural features such as MCT and LBP. We found that our method's classification rate as well as detection rate under equal false positive rate are higher than conventional one.

A Unified Approach to Exact, Approximate, Optimized and Decentralized Output Feedback Pole Assignment

  • Tarokh, Mahmoud
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.939-947
    • /
    • 2008
  • The paper proposes a new formulation of the output feedback pole assignment problem. In this formulation, a unified approach is presented for solving the pole assignment problem with various additional objectives. These objectives include optimizing a variety of performance indices, and imposing constraints on the output feedback matrix structure, e.g. decentralized structure. Conditions for the existence of the output feedback are discussed. However, the thrust of the paper is on the development of a convergent pole assignment algorithm. It is shown that when exact pole assignment is not possible, the method can be used to place the poles close to the desired locations. Examples are provided to illustrate the method.

Automated optimization for memory-efficient high-performance deep neural network accelerators

  • Kim, HyunMi;Lyuh, Chun-Gi;Kwon, Youngsu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.505-517
    • /
    • 2020
  • The increasing size and complexity of deep neural networks (DNNs) necessitate the development of efficient high-performance accelerators. An efficient memory structure and operating scheme provide an intuitive solution for high-performance accelerators along with dataflow control. Furthermore, the processing of various neural networks (NNs) requires a flexible memory architecture, programmable control scheme, and automated optimizations. We first propose an efficient architecture with flexibility while operating at a high frequency despite the large memory and PE-array sizes. We then improve the efficiency and usability of our architecture by automating the optimization algorithm. The experimental results show that the architecture increases the data reuse; a diagonal write path improves the performance by 1.44× on average across a wide range of NNs. The automated optimizations significantly enhance the performance from 3.8× to 14.79× and further provide usability. Therefore, automating the optimization as well as designing an efficient architecture is critical to realizing high-performance DNN accelerators.

Speech Enhancement Using Receding Horizon FIR Filtering

  • Kim, Pyung-Soo;Kwon, Wook-Hyu;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • A new speech enhancement algorithm for speech corrupted by slowly varying additive colored noise is suggested based on a state-space signal model. Due to the FIR structure and the unimportance of long-term past information, the receding horizon (RH) FIR filter known to be a best linear unbiased estimation (BLUE) filter is utilized in order to obtain noise-suppressed speech signal. As a special case of the colored noise problem, the suggested approach is generalized to perform the single blind signal separation of two speech signals. It is shown that the exact speech signal is obtained when an incoming speech signal is noise-free.

  • PDF

A Fuzzy Logic Controller for Speed Control of a DC Series Motor Using an Adaptive Evolutionary Computation

  • Hwang, Gi-Hyun;Hwang, Hyun-Joon;Kim, Dong-Wan;Park, June-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • In this paper, an Adaptive Evolutionary Computation(AEC) is proposed. AEC uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner is order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. AEC is used to design the membership functions and the scaling factors of fuzzy logic controller (FLC). To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than that of PD controller.

  • PDF

Measurement Technique for Sea Height of Burst Using Image Recognition

  • Park, Ju-Ho;Hong, Sung-Soo;Kang, Kyu-Chang;Joon Lyou
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.76-83
    • /
    • 2000
  • A measurement technique of a sea height of burst is introduced for a proximate test using the image recognition of video cameras. In the burst of fuse on the ocean, the burst center of fuse, the sea surface level and the height of calibration poles are measured by the process of image obtained from cameras. Finally, the height of burst of fuse can be computed by Hough transform algorithm. The error compensation algorithms are proposed to eliminate the errors caused by camera level and environmental parameters. As a result of experiment, it has been proved that the proposed measurement system shows the recognition of the center point of the burst image with ${\pm}$0.5m error.

  • PDF

Multi-Valued Decision Making for Transitional Stochastic Event: Determination of Sleep Stages Through EEG Record

  • Nakamura, Masatoshi;Sugi, Takenao
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.239-243
    • /
    • 2002
  • Multi-valued decision making for transitional stochastic events was newly derived based on conditional probability of knowledge database which included experts'knowledge and experience. The proposed multi-valued decision making was successfully adopted to the determination of the five levels of the vigilance of a subject during the EEG (electroencephalogram) recording; awake stage (stage W), and sleep stages (stage REM (rapid eye movement), stage 1, stage 2, stage $\sfrac{3}{4}$). Innovative feature of the proposed method is that the algorithm of decision making can be constructed only by use of the knowledge database, inspected by experts. The proposed multi-valued decision making with a mathematical background of the probability can also be applicable widely, in industries and in other medical fields for purposes of the multi-valued decision making.

Decoupled Neural Network Reference Compensation Technique for a PD Controlled Two Degrees-of-Freedom Inverted Pendulum

  • Seul Jung;Cho, Hyun-Taek
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.92-99
    • /
    • 2004
  • In this paper, the decoupled neural network reference compensation technique (DRCT) is applied to the control of a two degrees-of-freedom inverted pendulum mounted on an x-y table. Neural networks are used as auxiliary controllers for both the x axis and y axis of the PD controlled inverted pendulum. The DRCT method known to compensate for uncertainties at the trajectory level is used to control both the angle of a pendulum and the position of a cart simultaneously. Implementation of an on-line neural network learning algorithm has been implemented on the DSP board of the dSpace DSP system. Experimental studies have shown successful balancing of a pendulum on an x-y plane and good position control under external disturbances as well.

Tracking Control of Robotic Manipulators based on the All-Coefficient Adaptive Control Method

  • Lei Yong-Jun;Wu Hong-Xin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.139-145
    • /
    • 2006
  • A multi-variable Golden-Section adaptive controller is proposed for the tracking control of robotic manipulators with unknown dynamics. With a small sample time, the unknown dynamics of the robotic manipulator are denoted equivalently by a characteristic model of a 2-order multivariable time-varying difference equation. The coefficients of the characteristic model change slowly with time and some of their valuable characteristic relationships emerge. Based on the characteristic model, an adaptive algorithm with a simple form for the control of robotic manipulators is presented, which combines the multi-variable Golden-Section adaptive control law with the weighted least squares estimation method. Moreover, a compensation neural network law is incorporated into the designed controller to reduce the influence of the coefficients estimation error on the control performance. The results of the simulations indicate that the developed control scheme is effective in robotic manipulator control.

A New Robotic 3D Inspection System of Automotive Screw Hole

  • Baeg, Moon-Hong;Baeg, Seung-Ho;Moon, Chan-Woo;Jeong, Gu-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.740-745
    • /
    • 2008
  • This paper presents a new non-contact 3D robotic inspection system to measure the precise positions of screw and punch holes on a car body frame. The newly developed sensor consists of a CCD camera, two laser line generators and LED light. This lightweight sensor can be mounted on an industrial robot hand. An inspection algorithm and system that work with this sensor is presented. In performance evaluation tests, the measurement accuracy of this inspection system was about 200 ${\mu}m$, which is a sufficient accuracy in the automotive industry.