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Speech Enhancement Using Receding Horizon FIR Filtering

Pyung Soo Kim, Wock Hyun Kwon, and Oh-Kyu Kwon

Abstract © A new speech enhancement algorithm for speech corrupted by slowly varying additive calored noise is suggested based
on a state-space signal model. Due to the FIR structure and the unimportance of long-term past information, the receding horizon
(BH) FIR filier known to be a besl linear unbiased estimation (BLUE) filter is utilized in order to obtain noise-suppressed speech
signal. As a special case of the colored naisc problem, the suggesled approach is generalized to perform the single blind signal sepa-
ration of two speech signals. [t is shown that the exact speech signal is obtained when an incoming speech signal is noise-free.
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I. Introduction

Speech enhancement is the terin used to describe algorithms
or devices whose objeclive is to improve some perceplual
aspects of speech when its clarity and intelligibility are preatly
reduced due to either channel noisc or noise present in the
speaker's environment. During the lasl twenty years, develop-
ment and widespread deployment of digital communication
systems, ie,, cellular telephony and speech recognition sys-
lems have broughl increased attention 1o the role of speech
enhancement in speech processing problems.

The tradilional speech enhancement literature has been
fargely dominated by the discrete Fourier transform{DFT)
based spectral subtraction strategy in the frequency domain [1-
4]. However, this spectral subiraciion approach developed so
far have been only approximative since no elficient exact ap-
proach is known. Moreover, many simplifying assumptions
are used such as Lhe independence ol the naise signal spectrum
from the speech signal spectrum and the mutual independence
of their frequency components. In the time domain, the Wiener
filtering approach[3] and the direct time-domain mapping
approach[6] have been developed. However, in these ap-
proaches, it is assumed that the speech and noise signals are
stationary. Therelore, if these signals are nonstationary, the
result can be expected to be even worse,

In the recent years, due to the more compact representation
and the efficient manner than above existing approaches, sev-
eral atlempts to use the Kalman filtering in speech enhance-
ment approaches have been made by posing the estimation
problem based on a state-space framework in the time domain
[7-10]. The Kalman filtering approach makes use of models of
the speech and noise signals and also works with nonstation-
ary signals, However, due to its infinite impulse response (ITR)
structure and recursive formulation, the Kalman filtering may
be sensitive and show even divergence phenomenon for tem-
porary modeling uncertainties and mumerical errors [11-12].
Therefore, an efficient approach for betler noisc-suppressed
speech signal would be 1o obtain the alternative filtering alga-
rithm which can overcome disadvantages of the Kalman [ilter-
ing while advantages of that are maintained.

Il has been a general rule of thumb in signal processing
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areas thal the finite impulse response(FIR) structure filter,
which utilizes the information only on the finite interval, is
more robust against temporary modeling uncertainties and
numerical errors than the [TR structure filter, and guaraniees
the bounded input bounded outpui(BIBO) stabilitv{13]. In
addition, it is noted that Jong-term past information may be not
important in speech signal analysis.

Therefore, in the current paper, an alternative approach for
the speech ephancement 1s suggested using the receding hori-
zon(RH) FIR filtering. The RH FIR filter is derived from the
well known Kalman filter with the receding horizon strategy
for the state estimation in discrete-time state-space models[14].
Recently, the RH FIR filter has heen shown to be a best linear
unbiased estimation (BLUE) filter with FIR structures, which
processes the finite measurements on the most recent horizon
linearly, doesn'l require ¢ priori stalistics information of the
horizon inftial state and has the properties ol unbiasedncss,
minimum variance and efficiency[15]. Due to its FIR structure,
the RH FIR filtering has some good inherent properties. The
suggested speech enhancement approach using RH FIR filter-
ing aiso provides the compact represenlation and the efficient
manner as the Kalman filtering approach, since a slate-space
signal medel in the tume domain is utilized to represent the
noisy speech signal of an autoregressive(AR) model.

As a special case of the colored noise problem, the sug-
gested approach is generalized to perform the blind signal
separalion of two or more speech signals fram a single meas-
urement. I1 i3 shown that the exact speech signal is obtained
when there are no noises, which indicates the finite convergent
time and the quick (racking ability of the RH FIR filtering.
This property cannot be obiained from the LR structure [il-
teres such as the Kalman [iltenng in [7-10].

II. Problem statement and speech signal model

The main task of the speech enhancement is a filter design
to provide a noise-suppressed estimate z, (&) of a speech
signal z,{£) withour adverse effect given the actual incoming
speech signal z(&). This incoming speech signal is summed by
a speech signal, a noise signal and a guantization poise,
=(K)=z,(k)+ z,(k) T v{k). The basic concept ol the speech en-
hancement is depicted in Tig. 1. A speech signal z(4) is gener-
ally thought of as a reahization of a stochastic process, where
the underlying process must be assumed to have the quasiperi-
odic stationarity and ergodicity properiies. The segments of a
speech signal can be divided inlo two bread calegories de-
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pending on the manner of excitation :  One is highly perfodic
voiced phonemes and the other is rather stochastic unvoiced
ones. The voiced phonemes are generated form a guasiperi-
odic process. The unvoiced phonemes are generated from a
randem process produced by turbulent airflow. It has been
known that an AR model is particularly suitable for modeling
a speech signal. The AR model for a speech signal should be
ideally driven by pulse train for voiced phonemes and by
white naise for unvoiced ones. In a noisy environment, the
qualily ol speech is degraded. Thus, the noise signal z,(k) has
10 be characterized in order to improve the clarity and intelli-
pibility of the speech signal by a noise suppression approach.
For most real-world speech applications, it is more realistic
that & noise signal is assumed to be a colored noise and almost
slationary for our application. Usually. a colored noise signal

is also medeled white noise driven AR model for its simplicity.

Tt can be assume safely that speech and noise signals are inde-
pendent and uncorrelated due to physical constraims. The
physiological phenomena of speech parameter changes in-
duced by noise are too long-term to be influential. A quantiza-
tion noise v(k) may arise in an incoming speech signal which
may be derived with the aid of a noisy sensor, i.c., one that
coniributes on a generally random basis some inaccuracy to
the measured incoming specch signal. A quantization noise is
a zero-mean Gaussian white noise with covariance

Moise Signal
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Fig. 1. Basic concept of the speech enhancement.

The corresponding AR models for a speech signal z,(k), a
noise signal zp(k), and an actual incoming speech signal z(%)
are defined as

EXCEDWENELIRNCY (1)
2 () =Y a2, (1) + v, (), @
2(K) = 2 (F) 24 (F) % w() @)

where excitation noises v,(k) and vp{k) are mutually uncorre-
lated zero-mean Gaussian white noises with covariances g,
and gy, respectively. These noises arc also muluvally uncorre-
lated with a quantization noise v(4).

In order to apply the RH FIR [iltering which will be ex-
plained in the next section, the AR signal models (1)-(3) are
represented in a stale-space signal model. The state of a sys-

tem at fime 4 is the minimum sel of infernal variables that
represents the effect ol all past excitation and is fundamental
in delermining the Muture evolution of the system. The AR
signal models are represented in the following stale-space
mode] :

xik+1j = Axkr + Gwik), )
otk = Cx(k) + wik) (3)

where 1he state and system noise vectors are defined as
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The system noise w{k) is now considercd as excilalion noises
vk, 1 {f) and the measuremcnt noise v(k) is considered as
quantization noise. Noises w(k) and w(k) are zero-mean Gaus-
sian white and nurtually uncorrelated. The covariance ol w(#) is
the diagonal matrx (2 whose elements are gy and g». Note that
coeflicient parameters «, and «, of the system matrix A are
assumed to be given by the well known parameter estimation in
[16] and remain constant during each [rame as in [7-8].

1I1. Speech enhancement using RH FIR filtering

In this section, io obtain the noise-suppressed estimatc of a
gpeech signal, the RH FIR filiering algorithm developed re-
cenily in [14] is applied to the state-space signal model (4) and
{5). The RH FIR fillering uiilizes the only finite measurements
on the most recent horizon and discards the past measurements
outside the horizon for the estimale at the present time £. In
order to determine the RH FIR filtering of the hortzon length
M, measuremenl information on the hovizon [£— M, k] is util-
ized, together with information about the staie at the slarling
point £— M. This state, al lime & — M, will be called the hori-
zon initial state. In the RH FIR [iltering, past measurements
outside the hotizen are discarded and il is assumed that the
horizon initial state is unknown and can thus be anything at all.
Tt follows from this fact that the horizen initial statle must have
an arbitrary mean and an inlinite covariance. There are several
reasons why this assumption about the horizon initial state
must be taken. Firstly, [or state estimation problems any state
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should be considered not measurable and thus unknowmn. Since
the initial state is also a stale, it is logical to assume that the
horizon initial state is also not measurable and thus unkaown.
Secondly, & priori mformation is hard 1o obtain in some situa-
tions where the system is in an abrupt change or not asymp-
tolically stable. Thirdly, an infinite covariance of the horizon
initial state is a tool 10 obtain a BLUE with FIR structures and
a deadbeat properly which will be explained later. The RH I'TR.
filter with unknown hovizon initial state is time-invariant and
defined by the following siandard FIR form -

£06) = HZ(0) = 3 M )zk - ) %

with the perlormance criterion
J = Elx(k) = 20 [x(k) - £(£)]

where A is the horizon length, the [iller gain & and the meas-
uretmnents Z(k} on the most recent horizon [k— M, k] are
delined respectively as

H =[hMYy "M -1} 5],
2y =[z(h - MY (k- M+D" - 25T,

When {4, C} is observable, 4 is nonsingular and M2 r-+m—
1, the elements of filter gain & can be determined by the Iol-
lowing algorithm [14] :

QT (AMNDHCT
»

)= , 0< <A (%)

where
DI+ =D + A7 UM~ -1 AGOG T 4™, (9)

QUAN =+ A7 QNATCOE T A7 QA +CTC/r (16)
DOy=1, O =C'C/r, O=I<M -1,

and @ (M) is known to be the estimation error covariance.
Since each row of the filler gain is the [lter gamn for each indi-
vidual state, the filter gains for speech and noise signals can be
divided respectively by

HS
H:[HJ, (1

that is, Hg and Hy are given by the first » rows and the last
# rows of the [iller gain A. Given the measured incoming
speech signals on the most recent horizon [k— M, £], the
nojse-suppressed estimate £,(k) for the state xy(f) is ex-
iracied by

Zlk—n+1)

Z(k-n+2)

Ro(k) = = HZ(k). (12)

Zy (k)
Therefore, from equations (6) and ¢12), the ultimate noise-

suppressed esttmate Z,(k) for the speech signal Z(k) is
obtained from the following very simple formulation

2(k)= HIZ(k) (13)

where H. isthe »throw olthe ;.

Unlike the Kalman filiering in [7-10], the RH FIR filiering
in the current approach offers many pracilical advantages.
Firstly, the RH FIR filter is a BLUE with an FIR structure,
which processes the finite measurements on the most recent
horizon linearly, doesn'l require @ pricri statistics information
of the horizon inilial state and has the properties of unbiased-
ness, minimum variance and efficiency. Secondly, the filter
gain A requires computation only on the interval [0,A]
once as shown in (8) and is time-invariant [or all horizans,
since ¢ {)(9) and O (MH{10) are determined uniquely on the
intetval |0,44]. This means that the filler gain /7 of the RH FIR
filtering can be abtained from off-line computation. Moreover,
as shown in (13). only one row A of the filter gain H is
utilized and thus the simple formulation (13) is only needed in
co-line computation. Thirdly, due to the FIR structure, the RH
FIR filtering guarantees the BIBO stability, and may have the
robustness to temporary modeling uncertainties and 1o nu-
merical errors.

In the RH FIR fillering approach, both the horizon length M
and the normalized noise covarfance matrix Q / » are design
parameters. They affect differently the noise suppression and
the tracking properties of the RH FIR filtering. The RH FIR
filtering has greaier noise-suppressing ability and less tracking
ability [or the speech signal as the horizon length Af increase.
Since M is an integer, fine adjustment of the properties with Af
is difficult. Mareover, it is difficult to determine the horizon
length is systematic ways Therefore, in lhe implementations,
one way to determine M is Lo use a large enough value that can
provides enough noise-suppressing ability. When the horizon
length is fixed, the tracking ability for the speech signal in-
creases and the noise suppressing ability decreases as @/ »
increases. O / r provides a contwvous parameter to adjust the
noise-suppressing and {racking properties, Moreover, the
properties of the fillering can be selectively adjusted via ele-
ments of the O matrix. Therefore, 2/ # is a uselul parameter
in the adjustment of the noise-supptession and tracking prop-
erties of the RH FIR fillering for spcech enhancement.

1V. Properties of suggested approach

In the previous section, a speech signal corrupted by a noise
signal Zxy(k) is considered. When the noise signal is colored
and highly nonstationary, the distinction between what is
speech signal and what is noise signal becomes somewhat
ambiguous. In this case, this noise signal itself can be ireated
as an additional speech signal that musl be estimated. In this
case, the incoming speech signal, z(k)=2¢(k) + 2 (&) +v(k), can
be represented into a general [orm, the sum of two speech
signals with a quantization noise. z{(k)=z, (k) +zz (k) + (k).
This is a form of blind signal scparation, i.e., when ihe signals
result [rom the mixing of speakers. Single separation approach
has primarily been based on harmonic selection and pitch
tracking in the frequency domain| 17]. In the literature[ 18], [
signals are separated fiom [ measurements by learning a
fixed inverse weighting matrix. However, in the gurrent ap-
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proach, two or more speech signals are separated from only
single measurement in the time domain. A state-spacc signal
model is considered where two speech signals are represented
as a state vector x(k)=[xI(k) x;()]" assumed to be
x (k)eR” and x,(k)eR". Then, given the measured in-
coming speech signals on the most recent horizon [4— A, £],
the RH TR filtering provides best separated estimates X, (%)
and (%) as

R ()= H,Z(), %,(6)=H,Z(k)

where Ha and Hy are the filter gains for %,(k) and x,(k)
and given similarly to (11) by (8). Therefore, the ultimate
noise-suppressed estimate Z, (%) and Z »{k) for two speech
signals z, (k) and zp (k) are obtained from the following very
simple formulation:

z,(k)= HZ(K), Z,(k)=H;Z(%) {14

where H” is the n th row of the H, and H;’; is the m th
row of the Hg. It can be thus known from (14) that the RH
FIR filtering for the speech enhancement is generalized to
perform the blind signal separation of two speech signals from
a single measurement Z(k) when the distinction between two
signals are somewhal arbitrary. Moreover, it can be seen that
the blind signal separation in the current paper can be easily
implemented to parallel processing since the corresponding
filter gains #' and H ;’; for each signal are structurally
separated.

When the incoming speech signal nearly constant in the
harizen, it can be assumed that & = 0 from {4) and (5). Substi-
tuting @ = 0 into (8)-(10), the element of the filler gain, de-
noled by h (/) , is given by simpler algorithrns as

R =87 (M)A7C7, 0<j<M,
— "
B =1yamces.
=0

Note that the Kalman filtering may diverge in this case,
whereas the RH FIR filtering is stifl stable. This is an advan-
tage of the RH FIR filtering approach.

It is noted that the actual incaming specch signal may be
different from the model {4) and (5). alihough the RH FIR
filtering is designed on the model. Tn the following, it will be
shown that the RH FIR filtering provides ihe exact speech
signal when the incoming speech signal is noise-free iLe.,
v{E=l=v(E)=0 in {1)-(3), although the excitation and
quantization noise covariances gs, gy, & in the filter design are
nonzero. From (4) and (5), a neise-free speech signal =(k) is
represented in the following state-space model *

x(k + 1) = Ax(k), =(k) = Cx(k).

From (9) and (10}, AL} can be written as
1 Af

QMY=—3 ®(/HC'CA™.
i

Then the estimate X(k) using the deferministic measurement
z{k} becomes

il

SOEDWOHECE)

-0 (M)'Z%cbmc%(k s

_q (M){Z%m( J)cTCAix(k)
= x(k)

and then z,(k)=z.(k).

Thetefore. the suggesied speech enhancement approach
using the RH FIR fillering provides the exact speech signal for
the noise-free specch signal. This exact eslimation perform-
ance indicates the finile convergent time and the quick track-
ing ability of the filter. Morcover, this property cannot be ob-
1ained using the TIR structure filters such as the Kalman filler-
ing [7-10].

V. Experiment

In this section, an experiment is performed in ovder i
evaluate performance of the suggested speech enhancement
algorithm when a noise signal due 1o a running drill is added
to a speech signal inside a laboratory. The speech signal Fig.
2(a) is recorded by a male speaker using microphone mounted
inside a laboratory when the drill is stationary. The noise sig-
nal Fig. 2(b) is recorded by ihe running drill when the speech
signal is not present The recorded noise signal is artificially
added 1o the speech signal o produce the actual fmeoming
speech signal Fig. 2{c). The actual incoming speech signal is
approximately 24,000 points. As mentioned previously, coeffi-
cient parameters «, and @, of the system matrix 4
are assumed Lo be given by the well known parameler estima-
tion in [16] and remain constant during each [rame as in [7-8].
The horizon length and noise covariances as design parame-
ters are sel by A =10 . g5= 0.5, g,=0.1 and » = 0.05, The last
plat Fig. 2(d) is the noise-suppressed specch signal oblained
by the suggested algorithm.

(a) Speech Signal

o s e mnpwmwwW

{b) Mmise Signal

A

(c) incorning Morsy Speach Signal

WW
() Moise-suppressed Speech Signal
anwwﬂW
Fig. 2. Experiment resull.

VI Conclusions
A new speech enhancement algorithim for speech corrupted
by slowly varying additive noise is suggested based on a state-
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space signal model. The RH FIR filter known to be a BLUE is
utilized i order to obtain noise-suppressed speech signal due
lo its FIR structure and the unimportance of long-term past
information in speech signal analysis. The suggested RH FIR
filtering approach is generalized to perform the blind signal
separation of two speech signals from a single measurement, It
is shown thal exact speech signal is given when an incoming
speech signal is noise-free. Furthermore, due to the TIR struc-
ture, ihe RH FIR filtering approach guarantees the BIBO sta-
bility and may offer the robustness to temporary modeling
uncertainties and 1o numerical errors, whereas in this case lhe
Kalman fillering approach may be sensitive and show even
divergence phenomenon for temporary modeling uncertainties
and numerical errors
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