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A Fuzzy Logic Controller for Speed Control of a DC Series Motor
Using an Adaptive Evolutionary Computation

i Hyun Hwang, Hyun-Joon Hwang, Dong-Wan Kim, and June Ho Park

Abstract : In this paper, an Adaptive Evolutionary Compuiation(AEC) is proposed. AEC uses a genetic algorithm{GA) and an
evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations: global search capa-
bility of GA and local search capability of ES, In the reproduction procedure, proportions of the population by GA and ES are adap-
lively modulated according Lo the [itness. AEC is used to design the membership functions and the scaling [actors of fuzzy logic con-
troller {FL.C}. To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed eontrol of an actual
DC series motor syslem with nonlinear characteristics. Experimental results show that the proposed contraller has better performance

than that of PD controller.
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L Introduction

During the lasi decade, fuzzy logic control has been at-
tracled great attention from both the academic and industrial
communities. Recenlly, fuzzy logic contraller has been sug-
gested as an allernative approach to conventional control tech-
niques for complex control system, such as nonlinear or time
delay systemn. Thal is, the design of fuzzy logic controller
(FLC) does not require a mathematical description of the con-
trol sysiem and the fuzzy controller can compensate the envi-
ronmental variation during the operating process [1-3].

However, we cannot abtain good control performances if
the membership [unclions, fuzzy rules and scaling factors are
incorrect. Recently, the membership functions, fuzzy rules and
scaling factors are determined by evolutionary computations
(ECs), which are the probabilistic search methods based on
genetics and evolutionary theory [4-5].

ECs arc optimization algorithms based on the principles of
the genelics and natural selection. There are three broadly
similar avenues of invesligation in the ECs: genetic algorithm
(GA), evolution stralegy(ES), and evolutionary programming
(EP) [4-6]. When applied for solving the practical problems,
each begins with a population of contending trial solutions
brought to the task at hand. New solutions are created by ran-
domly altering the existing solutions by the EC operation. The
objeciive measure of performance is used to assess the fitness
of each trial solution and selection,

Tt is obvious from the start that finding good settings for the
EC parameters for a particular problem is not a trivial task.
Several approaches are praposed. As One approach, adapting
population size. crossover rate, and mulation rate are used.
Arabas[7] proposed an adaptive method for maintaining vari-
able population size. Schlierkamp-Voosen[8] presented a
competition scheme, which dynamically allocates the number
of trials piven to different search strategies. The compelition
scheme changes not enly Lhe size of the subgroups, but also
that of the whele population. Srinivas[9] proposed the Adap-
tive Genelic Algorithm(AGA), that is, the probabililies ol
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crossover and mutation are varied depending on the fitness
values of the solutions 1o maintain the diveisity in the popula-
tion and ta suslain the convergence capacity of the GA.

The other approach is involved in 1) adapting the probabili-
ties ol crossover and mutation operator in the GA : the idea is
that the probability of applying an operator is altered in pro-
partion to the observed performance of the individual created
by this operator, 2} Mulalion parameters are adapted during
the run in the ES. Hinterding[ 10] proposed Gaussian mutation
operators for the GA, which allows the GA to vary the muta-
tion strength during the run. Spears[11] proposed an adaptive
mechansm for contrelling the vse of crossover in the ECs and
explored the behavior of this mechanism in a number of dif-
ferent situations.

In this paper, the new methodology of evolutionary compu-
tations-an Adaptive Evolutionary Computation(AEC)-is pro-
posed. AEC uses a GA and an ES in an adaptive manner in
arder to take merits of two different evolutionary computa-
tions: global search capability of GA and local search capabil-
ity ol ES. In the 1eproduction procedure, proportions of the
population by GA and ES are adaptively modulated according
to the fitness. AEC is used to design the membership funclions
and the scaling [actors of the FLC. The proposed FLC is ap-
plied to the speed control of an actual DC serics motor system
with nonlinear characteristics,

I1. Adaptive evolutionary computation
1. Motivation

In general, GA is known to offer significant advantages
over traditional optimization methods. The mosl important
ones are: the population-based search, the balance between
exploitation{convergence) and exploration{diversity}. Bul GA
can suffer from the excessively slow convergence before
providing an accurate solution because of its nol exploiting
local information. On the other hand, ES is well-known 1o
exploit all local information in an efficient way. But, [or prob-
lems with many local minima, it has the possibility of trapping
in local minima.

In this paper, to reach the global optimum accurately and
reliably in a short execution time, AEC bringing logether the
benefils of the GA and the ES is designed. In the AEC, GA
operators and ES operators are simullaneously applied to the
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individuals of the present generatlion to create next one. Indi-
viduals with higher fitness value will have a higher prabability
of contributing one or more chromoesomes in the next genera-
tiow. This mechanism should give greater rewards 1o either the
GA operation or the ES operation that produces superior off-
spring.
2 Adaptive evolutionary computation

In the AEC, the number of individuals created by the GA
operation and the ES operation changes adaptively. Configura-
tion of the AEC is shown in Fig. 1. In the AEC, the individual
is represented as a real number chromosome, not a binary
chromosome, which makes it possible to hybridize [or the GA
operation and the ES eperation without loss of data, The main
objective behind such implementation is that it enhances the
performances of the AEC,
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Fig. |. Configuration of adaptive evolutionary computation.

ES forms a class of optimization iechniques motivated by
the reproduction of biological sysiem and a population of in-
dividuals cvolves toward the better solutions by means of the
mutation and selection operation. In this paper, we adopted(p,
A)-ES, that is, only the & offspring by mutation operation
competes for survival and the p parents are completely re-
placed each generation. Also, self-adaptive mutation step sizes
are used in the ES.

For the AEC to self-adapt its use of the GA and ES, cach
individual has an operator code in order to represent whether
governed by the GA or the ES. Suppose a “(’ refers to the GA,
and a *1” to the ES. At each generation, if it is more proper to
use the GA, more *0’s should appear in the end of individuals.
If it is more proper to use the ES, more ‘1’s should appear.
Alfler reproduction by the roulette wheel selection according to
the fitness, the GA operations - crossover and mutation - are
performed on the individuals of which operator code is *0” and
the ES aperation, that is, nutation is performed on the indi-
viduals of which operator code is “1°. Elitism is also used.
Best individual in the population is preserved to perform bath
the GA operations and the ES operation te next generation.
The major procedures of AEC are as [ollows:

1} fuitialization : Initial population is randomly generated
and operation code is randomly initialized for each individual,
According (o the operation code. GA eperations are performed
on the individuals with operator code ‘0°, while ES operation
is applied where ihe operatar code is “1°.

2) Evatuation and Reproduciion © Using the maie selection
operalot, individual chromosomes are selecled in proportion to
their {tness, which is evalualed using an objective function.

After reproduction. GA operalions{crossover and mutation)
are performed on ithe individuals having an operator code of
‘0" and ES operation(imutation) is performed on those having
an operator code “[°. Al every generation, the percentages of
“1’s and *0’s in the operalor code indicate the performance of
the GA and ES operator.

3) Preservation of Minimum Number of Individuals | Al
each generation, AEC may sometimes fail into a siuation
where the percentage of the offspring is nearly 100% or the
offspring dies off. Therelore, it is necessary for the AEC to
preserve a cerlain amount of the individuals [or each EC op-
eration. In this paper, we change the operation code of the
individuals randomly with a high percentage, until the number
ol the individuals for each EC operation become higher than a
certain amount of he individuals to be preserved. The prede-
termined minimum number of the individuals to be preserved
is set to 20% ol the population size.

4y Genetie Algorithm - The real-valued coding is used to
represent a solution [4]. Simple crossover and uniform muta-
tion are used as genelic operators.

3) Evolution Straregy ¢ Only A olTspring by mutaiion opera-
tien compeles for survival and p parents are completely re-
placed each generation. Then. mutation is independently per-
formed on each vector element by adding a normally distrib-
uted Gaussian random variable with mean zero and standard
deviation (c). as shown in (1}. I the success ratio of mutation
operator is smaller than the predetermined ratio, we increase
the rate for standard deviation of mutation according ta ¢, as
shown in (2). 1 this ratio is larger than the predelermined ratia,
we decrease the rate according Lo ¢y, as shown in (2).
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Where, N(0,& ) © Veclor of independent Gaussian
random variable with mcan of
zero and standard devialions o
¥/ k-th variable a1 ( generation
4t} The success ratio of the mulalion
aperator during the last ¢ generation
¢q ¢, - The increase and decrcasc rates
for the variance of the mutation
&1 Constants

1. Design of fuzzy logic controller using adaptive
evolutionary computation
[n designing the FLC, 1he exact mathematical modeling of
control system is nol needed and fuzzy rules can le
represenied as the knowledge ol the experls. The design
parameters used in this paper are given below.
— number of Input/outpul variables © 2/1
—number of input/output membership functions © 7/7
— fuzzy inference methad: max-min method
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— defuzzification method: center of gravity

In this paper, the proposed method is to optimize the
shapes of the membership fimctions and the scaling fac-
tors by the AEC. The general scheme is presented in
Fig. 2. The input signals 1o the FLC are speed deviation
(e) and the change in speed error(de). The output signals
of the FL.C are used to the speed control of an actual DC
series motor sysiem. Because the error and the change-
ol~error are used as input variahles of the FL.C, PD-like
FLC is used. Rule base for the

AEC
ug 2 E,—|se Do
:ﬁ :’I”il Series ! .
o e b Morer

Fig. 2. Block diagram of fuzzy logic controller using the AEC.

PD-like FLC from the two-dimensional phase plane of the
systern in terms of the error and the change-of-etror is shown
in Table 1. The general approach to design the FLC is the divi-
sion of the phase plane into lwo semi-planes, by means of
switching-line. Within the semi-planes positive and negalive
control outputs are produced, respectively.

Table 1. PD-type fuzzy rules.
De

E NB NM NS ZE PS PM PB

NB|NBE NB NB NM NM NS ZE
NM | NB NB NM NM NS ZE PS
NS | NB NM NM NS ZE PS PM
ZE UNM NM NS ZE PS PM PM
PS [NM NS ZE PS PM PM PB
PM ZE. PS PM PM PB PB
PB PS PM PM PB PB PR

The magnitude of the output signals depends on the distance
ol the state vector from the switching line. When tuning the
membership functions by the AEC, fuzzy rules are symmeiric
about switching line as shown in Table 1. In this table, lingnis-
tic variable NB means “Negative Big”, NM “Negative Me-
dium”, N8 “Negative Small”, ZE “Zero”, PS “Positive Small”,
PM “Positive Medium™, and PB “Positive Big”. The shape of
the input and output membership function is assumed to be
triangular. Also 7 inpul/output fuzzy sets for every in-
put/output variable are used, hence the number of parameiers
ol the FLC (center and width of the membership functions) is
63. But it takes Jong time lor the AEC ta tune 63 fuzzy pa-
rameters. In this paper, the ZE membership funciion is set at 0
and positive and negative membership funclion is symmetric
about . So the munber of parameters ol the FLC is 21, that is,
3 cenlers and 4 widths [ov each variable, as shown in Fig. 3.
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Fig. 3. Symmetrical membership functions.

Also the scaling factors of the FLC using the AEC are tuned,
as shawn in Fig. 2. To encode each parameter, real coding
technique is used Stiing architeclure for tuning the member-
ship functions and the scaling factors is shown in Fig, 4. To
evaluate each string in the population, the abselule error be-
tween ouipul speed and reference speed of generator is used.
The fitness function is defined in (3).

Fimess = I— (3)
100 + 3 joe — s |
%=]

Where. o, : actual speed
.+ desired speed
N . Mo. of data acquired during T second

Sting 1 | Py | = | Py [Wy| = |W|SFy| = [8Fy
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Where, n : population size

1 2 No. of cenler of the membership functions
M : No. of width of the membership functions
k © No. of scaling factors
Fig. 4. Strings architecture [or Wining membership functions
and scaling factors,

V. Experimental results

Fig. 5 shows the speed contral system struclure of the speed
conlrol of an actual DC series motor. As shown in this fig.. the
ABC is used 10 optimize the shapes of the membership func-
tions and the scaling factors. Fig. 6 represents the experiment
apparatus for the speed control of the maotor. Table 2 shows the
simulation parameters of the AEC for luning the FLC. Fig. 7
presents the shape of the membership functions by the AEC.

TC 486 LN0bL1Z
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Fig. 5. Laboratory selup for dc series motor speed control.

Fig. 8 (a) provides the graphs ol the fitness values by the
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Table 2. Simulation parameters used AEC.

Metheds AEC

Size of population 20
Crossover probability 0.83
Mutation probability (.05
& 0.3
Cq (.85
q 1.15

MNumber of Generation 20
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(a) The membership function of error
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Fig. 7 Tuned membership fimctions using AEC.
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(b) Number of individuals ol GA and ES in AEC
Fig. 8. Filness functions and number of individuals of GA
and ES.

AFC. Fig. 8 {b) provides the graphs of the number of indi-
viduals for the GA operations and the ES operation in the AEC.
As shown in Lhis fig., the percentage of individuals for the GA
aperation is greater than that of individuals for the ES opera-
tion in initial generation. But, from generation to geneiation,
the percentage of individuals for the ES operation exceeds that
of individuals for the GA operation. The AEC produces im-
provad reliabilities by exploiting the “global™ nature of the GA
initially as well as the “Tocal” improvement capabilities of the
ES from generation to generation

300[rpm/div]

2[sec/div]
{a) Speed response (PD Controller)
300 [rpm/div]

S

,

ey

2| sec/div]
(b) Speed response (TLC)
Fig. 9. Comparisons of speed response with the PD control-
ler and fuzzy logic controller.

Fig. 9 represcnis the experimental results of the DC series
motor system [or reference command used when tuning the
FLC and the PD controller. As shown in this fig., speed re-
sponse of the PD confroller produces many differences between
desired speed{w.) and actual speed(e). Whereas, the proposed
FLC produces more accurate speed response than the PD con-
troller in terms of tracking performance.

Therefore, the proposed FLC demonstrales a belter tracking
performance as compated with the PD controller. To evaluate
the robustness of the FLC, it is also tested over the reference
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command, which is not used when tuning. As shown in Fig, 10,
experimental results confirm that the FLC shows the better
performance over another reference command and various
disturbances than that of the PD controller.
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(b) Fuzzy logic conlroller
Fig. 10. Speed response with new reference speed.

V. Conclusions

In this paper, we have adaptively coupled the GA with the
ES. The reason for combining the GA with the ES is that thay
compliment each other. ES will try to optimize locally, while
the GA will try to optimize globally. Tn the AEC, GA operators
and ES operators are simultaneously applied 1o individuals ol
the present generation to create next one. In the AEC, the
number of individuals crealed by the GA operation and the ES
operafion changes adaplively. The AEC produces improved
reliabilities by exploiling the “global” nature of the GA ini-
tially as well as the “local” improvement capabilities of the ES
from generation 1o generation, so the AEC converges to the
global optimal solution within a few generations.

The AEC is used to design the membership functions and
the scaling factors of the FLC. The proposed FLC is applied to
the speed control of an actual DC series motor svslem with
nonlinear characteristics. Experimental resuits show that the
FLC has the betler contrel performance than the PD controller
in terms of rising time and setiling time. Also the FLC has the
better petformance over another reference command.
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