• Title/Summary/Keyword: automated technology

Search Result 1,530, Processing Time 0.039 seconds

Study on Automation of Comprehensive IT Asset Management (포괄적 IT 자산관리의 자동화에 관한 연구)

  • Wonseop Hwang;Daihwan Min;Junghwan Kim;Hanjin Lee
    • Journal of Information Technology Services
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • The IT environment is changing due to the acceleration of digital transformation in enterprises and organizations. This expansion of the digital space makes centralized cybersecurity controls more difficult. For this reason, cyberattacks are increasing in frequency and severity and are becoming more sophisticated, such as ransomware and digital supply chain attacks. Even in large organizations with numerous security personnel and systems, security incidents continue to occur due to unmanaged and unknown threats and vulnerabilities to IT assets. It's time to move beyond the current focus on detecting and responding to security threats to managing the full range of cyber risks. This requires the implementation of asset Inventory for comprehensive management by collecting and integrating all IT assets of the enterprise and organization in a wide range. IT Asset Management(ITAM) systems exist to identify and manage various assets from a financial and administrative perspective. However, the asset information managed in this way is not complete, and there are problems with duplication of data. Also, it is insufficient to update of data-set, including Network Infrastructure, Active Directory, Virtualization Management, and Cloud Platforms. In this study, we, the researcher group propose a new framework for automated 'Comprehensive IT Asset Management(CITAM)' required for security operations by designing a process to automatically collect asset data-set. Such as the Hostname, IP, MAC address, Serial, OS, installed software information, last seen time, those are already distributed and stored in operating IT security systems. CITAM framwork could classify them into unique device units through analysis processes in term of aggregation, normalization, deduplication, validation, and integration.

Exploring dietitians' views on digital nutrition educational tools in Malaysia: a qualitative study

  • Zahara Abdul Manaf;Mohd Hafiz Mohd Rosli;Norhayati Mohd Noor;Nor Aini Jamil;Fatin Hanani Mazri;Suzana Shahar
    • Nutrition Research and Practice
    • /
    • v.18 no.2
    • /
    • pp.294-307
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Dietitians frequently use nutrition education tools to facilitate dietary counselling sessions. Nevertheless, these tools may require adaptation to keep pace with technological advancements. This study had a 2-fold purpose: first, to identify the types of nutrition education tools currently in use, identify their limitations, and explore dietitians' perspectives on the importance of these tools; second, to investigate the features that dietitians prefer in digital nutrition education tools. SUBJECTS/METHODS: A semi-structured face-to-face interview was conducted among 15 dietitians from selected public hospitals, primary care clinics, and teaching hospitals in Malaysia. Inductive thematic analysis of the responses was conducted using NVivo version 12 software. RESULTS: Most dietitians used physical education tools including the healthy plate model, pamphlets, food models, and flip charts. These tools were perceived as important as they facilitate the nutrition assessment process, deliver nutrition intervention, and are time efficient. However, dietitians described the current educational tools as impersonal, outdated, limited in availability due to financial constraints, unhandy, and difficult to visualise. Alternatively, they strongly favoured digital education tools that provided instant feedback, utilised an automated system, included a local food database, were user-friendly, developed by experts in the field, and seamlessly integrated into the healthcare system. CONCLUSION: Presently, although dietitians have a preference for digital educational tools, they heavily rely on physical nutrition education tools due to their availability despite the perception that these tools are outdated, impersonal, and inconvenient. Transitioning to digital dietary education tools could potentially address these issues.

Edge Detection and ROI-Based Concrete Crack Detection (Edge 분석과 ROI 기법을 활용한 콘크리트 균열 분석 - Edge와 ROI를 적용한 콘크리트 균열 분석 및 검사 -)

  • Park, Heewon;Lee, Dong-Eun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.2
    • /
    • pp.36-44
    • /
    • 2024
  • This paper presents the application of Convolutional Neural Networks (CNNs) and Region of Interest (ROI) techniques for concrete crack analysis. Surfaces of concrete structures, such as beams, etc., are exposed to fatigue stress and cyclic loads, typically resulting in the initiation of cracks at a microscopic level on the structure's surface. Early detection enables preventative measures to mitigate potential damage and failures. Conventional manual inspections often yield subpar results, especially for large-scale infrastructure where access is challenging and detecting cracks can be difficult. This paper presents data collection, edge segmentation and ROI techniques application, and analysis of concrete cracks using Convolutional Neural Networks. This paper aims to achieve the following objectives: Firstly, achieving improved accuracy in crack detection using image-based technology compared to traditional manual inspection methods. Secondly, developing an algorithm that utilizes enhanced Sobel edge segmentation and ROI techniques. The algorithm provides automated crack detection capabilities for non-destructive testing.

A Case Study in Applying Hyperautomation Platform for E2E Business Process Automation (E2E 비즈니스 프로세스 자동화를 위한 하이퍼오토메이션 플랫폼 적용방안 및 사례연구)

  • Cheonsu Jeong
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.31-56
    • /
    • 2023
  • As the COVID-19 pandemic is prolonged, non-contact work has increased, as well as the demand for automation of simple and repetitive questions and tasks with success of using them. Therefore, companies are attempting to expand the area of automated business and apply various technologies such as AI to complex and various business processes of E2E to provide automation of all business. However, the extension to Intelligent Process Automation (IPA) is still in its beginning stage so that it is difficult to find practical use cases and related solutions. In this aspect, it is safe to say that there is insufficient evidence for companies which have various and complex enterprise processes to make a decision about the adoption. In this study, to solve this problem, a Hyper Automation Platform (HAP) that consists of RPA, Chatbot, and AI technology was proposed. Moreover, an implementation method that can bring intelligent process automation using HAP, and practical use-cases were provided so that it makes it possible to review the implementation of the HAP objectively and comprehensively. This study is meaningful and valuable to check the feasibility of the Hyper Automation concept and to actively utilize HAP.

Image-Based Machine Learning Model for Malware Detection on LLVM IR (LLVM IR 대상 악성코드 탐지를 위한 이미지 기반 머신러닝 모델)

  • Kyung-bin Park;Yo-seob Yoon;Baasantogtokh Duulga;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.31-40
    • /
    • 2024
  • Recently, static analysis-based signature and pattern detection technologies have limitations due to the advanced IT technologies. Moreover, It is a compatibility problem of multiple architectures and an inherent problem of signature and pattern detection. Malicious codes use obfuscation and packing techniques to hide their identity, and they also avoid existing static analysis-based signature and pattern detection techniques such as code rearrangement, register modification, and branching statement addition. In this paper, We propose an LLVM IR image-based automated static analysis of malicious code technology using machine learning to solve the problems mentioned above. Whether binary is obfuscated or packed, it's decompiled into LLVM IR, which is an intermediate representation dedicated to static analysis and optimization. "Therefore, the LLVM IR code is converted into an image before being fed to the CNN-based transfer learning algorithm ResNet50v2 supported by Keras". As a result, we present a model for image-based detection of malicious code.

Development of YOLO-based apple quality sorter

  • Donggun Lee;Jooseon Oh;Youngtae Choi;Donggeon Lee;Hongjeong Lee;Sung-Bo Shim;Yushin Ha
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.415-424
    • /
    • 2023
  • The task of sorting and excluding blemished apples and others that lack commercial appeal is currently performed manually by human eye sorting, which not only causes musculoskeletal disorders in workers but also requires a significant amount of time and labor. In this study, an automated apple-sorting machine was developed to prevent musculoskeletal disorders in apple production workers and to streamline the process of sorting blemished and non-marketable apples from the better quality fruit. The apple-sorting machine is composed of an arm-rest, a main body, and a height-adjustable part, and uses object detection through a machine learning technology called 'You Only Look Once (YOLO)' to sort the apples. The machine was initially trained using apple image data, RoboFlow, and Google Colab, and the resulting images were analyzed using Jetson Nano. An algorithm was developed to link the Jetson Nano outputs and the conveyor belt to classify the analyzed apple images. This apple-sorting machine can immediately sort and exclude apples with surface defects, thereby reducing the time needed to sort the fruit and, accordingly, achieving cuts in labor costs. Furthermore, the apple-sorting machine can produce uniform quality sorting with a high level of accuracy compared with the subjective judgment of manual sorting by eye. This is expected to improve the productivity of apple growing operations and increase profitability.

A Legal and Technical Analysis for Establishing Privacy Policies on Artificial Intelligence Systems (인공지능 시스템에서 개인정보 처리방침 수립을 위한 법적·기술적 요구사항 분석 연구)

  • Ju-Hyun Jeon;Kyung-Hyune Rhee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.1115-1133
    • /
    • 2024
  • With the rapid development of AI technology, AI systems are increasingly collecting, processing, and utilizing personal information in large quantities. As a result, transparency and accountability of personal information processing by AI systems, ensuring the rights of information subjects, and minimizing the risk of personal information infringement are becoming important issues. However, the existing privacy policy only discloses the personal information processing in general, and there is no privacy policy for AI systems. In order to solve these problems, In response to the implementation of the privacy policy evaluation system in accordance with the revision of the Personal Information Protection Act, we propose a new AI system privacy policy establishment and disclosure for personal in the design, development and operation of AI system. This study is expected to play a complementary role to the regulations on the right of data subjects to request an explanation and exercise the right of refusal for automated decisions under the current Personal Information Protection Act.

Slope design optimization framework for road cross section using genetic algorithm based on BIM

  • Ke DAI;Shuhan YANG;Zeru LIU;Jung In KIM;Min Jae SUH
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.558-565
    • /
    • 2024
  • This paper presents the development of an optimization framework for road slope design. Recognizing the limitations of current manual stability analysis methods, which are time-consuming, are error-prone, and suffer from data mismatches, this study proposes a systematic approach to improve efficiency, reduce costs, and ensure the safety of infrastructure projects. The framework addresses the subjectivity inherent in engineers' decision-making process by formalizing decision variables, constraints, and objective functions to minimize costs while ensuring safety and environmental considerations. The necessity of this framework is embodied by the review of existing literature, which reveals a trend toward specialization within sub-disciplines of road design; however, a gap remains in addressing the complexities of road slope design through an integrated optimization approach. A genetic algorithm (GA) is employed as a fundamental optimization tool due to its well-established mechanisms of selection, crossover, and mutation, which are suitable for evolving road slope designs toward optimal solutions. An automated batch analysis process supports the GA, demonstrating the potential of the proposed framework. Although the framework focuses on the design optimization of single cross-section road slopes, the implications extend to broader applications in civil engineering practices. Future research directions include refining the GA, expanding the decision variables, and empirically validating the framework in real-world scenarios. Ultimately, this research lays the groundwork for more comprehensive optimization models that could consider multiple cross-sections and contribute to safer and more cost-effective road slope designs.

Research on depth information based object-tracking and stage size estimation for immersive audio panning (이머시브 오디오 패닝을 위한 깊이 정보 기반 객체 추적 및 무대 크기 예측에 관한 연구)

  • Kangeun Lee;Hongjun Park;Sungyoung Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.5
    • /
    • pp.529-535
    • /
    • 2024
  • This paper presents our research on automatic audio panning for media content production. Previously, tracking an audio was done manually. With the advent of the immersive audio era, the need for an automatic audio panning system has increased, yet no substantial research has been progressed to date. Therefore, we propose a computer vision-based human tracking and depth feature processing system which processes depth feature through using 2-dimensional coordinates and models 3-dimensional view transformation for automatic audio panning to ensure audiovisual congruence. Also, this system applies stage size estimation model which gets input as an image and extrapolates stage width and depth as meter unit. Since our system estimates stage sizes and directly applies them to view transformation, no additional depth data training is required. To validate the proposed system, we also conducted a pilot test with Unity based sample video. Our team expects that our system will enable automated audio panning, assisting many audio engineers.

Evaluation for Optimization of CT Dose Reduction Methods in PET/CT (PET/CT 검사 시 CT 피폭선량 감소 방법들의 최적화 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Purpose Various methods for reducing radiation exposure have been continuously being developed. The aim of this study is to evaluate effectiveness of dose reduction, image quality and PET SUV changes by applying combination of automatic exposure dose(AEC), automated dose-optimized selection of X-ray tube voltage(CAREkV) and sinogram affirmed iterative reconstruction(SAFIRE) which can be controled by user. Materials and Methods Torso, AAPM CT performance and IEC body phantom images were acquired using biograph mCT64, (Siemens, Germany) PET/CT scanner. Standard CT condition was 120 kV, 40 mAs. Radiation exposure and noise were evaluated by applying AEC, CAREkV(120 kV, 40 mAs) and SAFIRE(120 kV, 25 mAs) with torso phantom compare to standard CT condition. And torso, AAPM and IEC phantom images were acquired with combination of 3 methods in condition of 120 kV, 25 mAs to evaluate radiation exposure, noise, spatial resolution and SUV changes. Results When applying AEC, CTDIvol and DLP were decreased by 50.52% and 50.62% compare to images which is not applying AEC. mAs was increased by 61.5% to compensate image quality according to decreasing 20 kV when applying CAREkV. However, CTDIvol and DLP were decreased by 6.2% and 5.5%. When reference mAs was the lower and strength was the higher, reduction of radiation exposure rate was the bigger. Mean SD and DLP were decreased by 2.2% and 38% when applying SAFIRE even though mAs was decreased by 37.5%(from 40 mAs to 25 mAs). Combination of 3 methods test, SD decreased by 5.17% and there was no significant differences in spatial resolution. And mean SD and DLP were decreased by 6.7% and 36.9% compare to 120 kV, 40 mAs with AEC. For SUV test, there was no statistical differences(P>0.05). Conclusion Combination of 3 methods shows dose reduction effect without degrading image quality and SUV changes. To reduce radiation exposure in PET/CT study, continuous effort is needed by optimizing various dose reduction methods.

  • PDF