• Title/Summary/Keyword: asymptotically nonexpansive mapping

Search Result 57, Processing Time 0.021 seconds

SOME CONVERGENCE THEOREMS FOR MAPPINGS OF ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE IN BANACH SPACES

  • Chang, Shih-sen;Yuying Zhou
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.119-127
    • /
    • 2003
  • The purpose of this paper is to study the necessary and sufficient conditions for the sequences of Ishikawa iterative sequences with mixed errors of asymptotically quasi-nonexpansive type mappings in Banach spaces to converge to a fixed point in Banach spaces. The results presented in this paper extend and improve the corresponding results of[l-4, 7-9].

STRONG CONVERGENCE THEOREMS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY MONOTONE MAPPINGS

  • He, Xin-Feng;Xu, Yong-Chun;He, Zhen
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, we consider an iterative scheme for finding a common element of the set of fixed points of a asymptotically quasi nonexpansive mapping and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common fixed point of a asymptotically quasi-nonexpansive mapping and strictly pseudocontractive mapping and the problem of finding a common element of the set of fixed points of a asymptotically quasi-nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.

STRONG CONVERGENCE THEOREMS FOR FIXED POINT PROBLEMS OF ASYMPTOTICALLY QUASI-𝜙-NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE

  • Jeong, Jae Ug
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.621-633
    • /
    • 2014
  • In this paper, we introduce a general iterative algorithm for asymptotically quasi-${\phi}$-nonexpansive mappings in the intermediate sense to have the strong convergence in the framework of Banach spaces. The results presented in the paper improve and extend the corresponding results announced by many authors.

AN ITERATIVE ALGORITHM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Yao, Yonghong;Liou, Yeong-Cheng;Kang, Shin-Min
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.75-86
    • /
    • 2010
  • An iterative algorithm was been studied which can be viewed as an extension of the previously known algorithms for asymptotically nonexpansive mappings. Subsequently, we study the convergence problem of the proposed iterative algorithm for asymptotically nonexpansive mappings under some mild conditions in Banach spaces.

CONVERGENCE OF MODIFIED MULTI-STEP ITERATIVE FOR A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS

  • Xiao, Juan;Deng, Lei;Yang, Ming-Ge
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.83-95
    • /
    • 2014
  • In a uniformly convex Banach space, we introduce a iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings and utilize a new inequality to prove several convergence results for the iterative sequence. The results generalize and unify many important known results of relevant scholars.

CONVERGENCE THEOREMS OF MIXED TYPE IMPLICIT ITERATION FOR NONLINEAR MAPPINGS IN CONVEX METRIC SPACES

  • Kyung Soo, Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.903-920
    • /
    • 2022
  • In this paper, we propose and study an implicit iteration process for a finite family of total asymptotically quasi-nonexpansive mappings and a finite family of asymptotically quasi-nonexpansive mappings in the intermediate sense in convex metric spaces and establish some strong convergence results. Also, we give some applications of our result in the setting of convex metric spaces. The results of this paper are generalizations, extensions and improvements of several corresponding results.

APPROXIMATING FIXED POINTS OF NONEXPANSIVE TYPE MAPPINGS IN BANACH SPACES WITHOUT UNIFORM CONVEXITY

  • Sahu, Daya Ram;Khan, Abdul Rahim;Kang, Shin Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.1007-1020
    • /
    • 2013
  • Approximate fixed point property problem for Mann iteration sequence of a nonexpansive mapping has been resolved on a Banach space independent of uniform (strict) convexity by Ishikawa [Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), 65-71]. In this paper, we solve this problem for a class of mappings wider than the class of asymptotically nonexpansive mappings on an arbitrary normed space. Our results generalize and extend several known results.

DEMI-CLOSED PRINCIPLE AND WEAK CONVERGENCE PROBLEMS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Chang, Shih-Sen;Cho, Yeol-Je;Haiyun Zhou
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1245-1260
    • /
    • 2001
  • A demi-closed theorem and some new weak convergence theorems of iterative sequences for asymptotically nonexpansive and nonexpansive mappings in Banach spaces are obtained. The results presented in this paper improve and extend the corresponding results of [1],[8]-[10],[12],[13],[15],[16], and [18].

  • PDF

APPROXIMATIONS OF THE ITERATIVE SEQUENCES FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Chang, Shih-Sen;Cho, Yeol-Je;Zhou, Haiyun
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.125-137
    • /
    • 2008
  • In this paper, we first introduce some iterative sequences of Halpern type for asymptotically nonexpansive mappings and nonexpansive mappings in Banach spaces and then we discuss strong convergence for the iterative processes. The results presented in this paper extend, supplement and improve the correspoding main results of Reich [11], Shimizu and Takahashi [13], Shioji and Takahashi [15], [16] and Wittmann [18].

  • PDF