References
- Proc. Amer. math. Soc. v.129 no.3 Some results for asymptotically pseudo-contractive mappings and asymp-totically nonexpansive mappings Shih-sen Chang
- Acta Math. Appl. v.24 no.2 iterative approximation problem of fixed points for asymptotically non-expansive mappings in Banach spaces Shih-sen Chang
- Indian J. Pure and Appl. v.32 no.9 on the approximating problem of fixed points for asymptotically nonex pansive mappings Shih-sen Chang
- J. Math. Anal. Appl. v.207 Convergence of Ishikawa iterative of quasi-nonexpansive mappings M. K. Ghosh;L. Debnath
- Proc. Amer. Math. Soc. v.35 A fixed point therem for asymptotically nonexpansive map-pings K. Goebel;W. A. kirk
- Israel J. Math v.17 Fixed point theorems non-Lipschitxian mappings of asymptotically nonexpansive type W. A. kirk
- J. Math. Anal. Appl. v.259 iterative sequences for asymptotically quasi-nonexpansive mappings Q. H. Liu
- J. Math. Anal. Appl v.259 Iterative sequences for asymptotically quasi-nonexpansive mappings with error member Q. H. Liu
- J. Math. Anal. Appl. v.43 Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings W. V. petryshyn;T. E. Williamson
- J. Math. Anal. Appl. v.178 Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process K. K. Tan;H. K. Xu
- Nonlinear Anal. TMA v.47 no.7 Approximating the fixed points of φ-hemicontractions by the Ishikawa iterative process with mixed errors in normed linear spaces H.Y. Zhou;Y.J. Cho;S.S. Chang