• 제목/요약/키워드: asymptotic Dirichlet problem

검색결과 10건 처리시간 0.021초

Asymptotic dirichlet problem for schrodinger operator and rough isometry

  • Yoon, Jaihan
    • 대한수학회보
    • /
    • 제34권1호
    • /
    • pp.103-114
    • /
    • 1997
  • The asymptotic Dirichlet problem for harmonic functions on a noncompact complete Riemannian manifold has a long history. It is to find the harmonic function satisfying the given Dirichlet boundary condition at infinity. By now, it is well understood [A, AS, Ch, S], when M is a Cartan-Hadamard manifold with sectional curvature $-b^2 \leq K_M \leq -a^2 < 0$. (By a Cartan-Hadamard manifold, we mean a complete simply connected manifold of non-positive sectional curvature.)

  • PDF

ASYMPTOTIC DIRICHLET PROBLEM FOR HARMONIC MAPS ON NEGATIVELY CURVED MANIFOLDS

  • KIM SEOK WOO;LEE YONG HAH
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.543-553
    • /
    • 2005
  • In this paper, we prove the existence of nonconstant bounded harmonic maps on a Cartan-Hadamard manifold of pinched negative curvature by solving the asymptotic Dirichlet problem. To be precise, given any continuous data f on the boundary at infinity with image within a ball in the normal range, we prove that there exists a unique harmonic map from the manifold into the ball with boundary value f.

Linear Approximation and Asymptotic Expansion associated to the Robin-Dirichlet Problem for a Kirchhoff-Carrier Equation with a Viscoelastic Term

  • Ngoc, Le Thi Phuong;Quynh, Doan Thi Nhu;Triet, Nguyen Anh;Long, Nguyen Thanh
    • Kyungpook Mathematical Journal
    • /
    • 제59권4호
    • /
    • pp.735-769
    • /
    • 2019
  • In this paper, we consider the Robin-Dirichlet problem for a nonlinear wave equation of Kirchhoff-Carrier type with a viscoelastic term. Using the Faedo-Galerkin method and the linearization method for nonlinear terms, the existence and uniqueness of a weak solution are proved. An asymptotic expansion of high order in a small parameter of a weak solution is also discussed.

COUNTING SUBRINGS OF THE RING ℤm × ℤn

  • Toth, Laszlo
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1599-1611
    • /
    • 2019
  • Let $m,n{\in}{\mathbb{N}}$. We represent the additive subgroups of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$, which are also (unital) subrings, and deduce explicit formulas for $N^{(s)}(m,n)$ and $N^{(us)}(m,n)$, denoting the number of subrings of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$ and its unital subrings, respectively. We show that the functions $(m,n){\mapsto}N^{u,s}(m,n)$ and $(m,n){\mapsto}N^{(us)}(m,n)$ are multiplicative, viewed as functions of two variables, and their Dirichlet series can be expressed in terms of the Riemann zeta function. We also establish an asymptotic formula for the sum $\sum_{m,n{\leq}x}N^{(s)}(m,n)$, the error term of which is closely related to the Dirichlet divisor problem.

A NEW MEAN VALUE RELATED TO D. H. LEHMER'S PROBLEM AND KLOOSTERMAN SUMS

  • Han, Di;Zhang, Wenpeng
    • 대한수학회보
    • /
    • 제52권1호
    • /
    • pp.35-43
    • /
    • 2015
  • Let q > 1 be an odd integer and c be a fixed integer with (c, q) = 1. For each integer a with $1{\leq}a{\leq}q-1$, it is clear that the exists one and only one b with $0{\leq}b{\leq}q-1$ such that $ab{\equiv}c$ (mod q). Let N(c, q) denote the number of all solutions of the congruence equation $ab{\equiv}c$ (mod q) for $1{\leq}a$, $b{\leq}q-1$ in which a and $\bar{b}$ are of opposite parity, where $\bar{b}$ is defined by the congruence equation $b\bar{b}{\equiv}1$ (modq). The main purpose of this paper is using the mean value theorem of Dirichlet L-functions to study the mean value properties of a summation involving $(N(c,q)-\frac{1}{2}{\phi}(q))$ and Kloosterman sums, and give a sharper asymptotic formula for it.

PHRAGMEN-LINDELOF AND CONTINUOUS DEPENDENCE TYPE RESULTS IN GENERALIZED DISSIPATIVE HEAT CONDUCTION

  • Song, Jong-Chul;Yoon, Dall-Sun
    • 대한수학회지
    • /
    • 제35권4호
    • /
    • pp.945-960
    • /
    • 1998
  • This paper is concerned with investigating the asymptotic behavior of end effects for a generalized heat conduction problem with an added dissipation term defined on a three-dimensional semi-infinite cylinder. With homogeneous Dirichlet conditions on the lateral surface of the cylinder it is shown that solutions either grow exponentially or decay exponentially in the distance from the finite end of the cylinder. In particular, to render decay estimate explicit, we pattern after the analysis of Payne and Song [13, 15]. The continuous dependence effect of perturbing the equations parameters is also investigated.

  • PDF

MULTIPLICITY RESULTS OF POSITIVE SOLUTIONS FOR SINGULAR GENERALIZED LAPLACIAN SYSTEMS

  • Lee, Yong-Hoon;Xu, Xianghui
    • 대한수학회지
    • /
    • 제56권5호
    • /
    • pp.1309-1331
    • /
    • 2019
  • We study the homogeneous Dirichlet boundary value problem of generalized Laplacian systems with a singular weight which may not be in $L^1$. Using the well-known fixed point theorem on cones, we obtain the multiplicity results of positive solutions under two different asymptotic behaviors of the nonlinearities at 0 and ${\infty}$. Furthermore, a global result of positive solutions for one special case with respect to a parameter is also obtained.

AN INVERSE PROBLEM OF THE THREE-DIMENSIONAL WAVE EQUATION FOR A GENERAL ANNULAR VIBRATING MEMBRANE WITH PIECEWISE SMOOTH BOUNDARY CONDITIONS

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.81-105
    • /
    • 2003
  • This paper deals with the very interesting problem about the influence of piecewise smooth boundary conditions on the distribution of the eigenvalues of the negative Laplacian in R$^3$. The asymptotic expansion of the trace of the wave operator (equation omitted) for small |t| and i=√-1, where (equation omitted) are the eigenvalues of the negative Laplacian (equation omitted) in the (x$^1$, x$^2$, x$^3$)-space, is studied for an annular vibrating membrane $\Omega$ in R$^3$together with its smooth inner boundary surface S$_1$and its smooth outer boundary surface S$_2$. In the present paper, a finite number of Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth components (equation omitted)(i = 1,...,m) of S$_1$and on the piecewise smooth components (equation omitted)(i = m +1,...,n) of S$_2$such that S$_1$= (equation omitted) and S$_2$= (equation omitted) are considered. The basic problem is to extract information on the geometry of the annular vibrating membrane $\Omega$ from complete knowledge of its eigenvalues by analysing the asymptotic expansions of the spectral function (equation omitted) for small |t|.