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PHRAGMEN-LINDELOF AND CONTINUOUS
DEPENDENCE TYPE RESULTS IN GENERALIZED
DISSIPATIVE HEAT CONDUCTION

JONG CHUL SONG AND DALL SUN YOON

ABSTRACT. This paper is concerned with investigating the asymp-
totic behavior of end effects for a generalized heat conduction prob-
lem with an added dissipation term defined on a three-dimensional
semi-infinite cylinder. With homogeneous Dirichlet conditions on
the lateral surface of the cylinder it is shown that solutions either
grow exponentially or decay exponentially in the distance from the
finite end of the cylinder. In particular, to render decay estimate ex-
plicit, we pattern after the analysis of Payne and Song [13, 15]. The
continuous dependence effect of perturbing the equations parameters
is also investigated.

1. Introduction

There has been an enormous explosion of activity in the field of heat
conduction at low temperature, see, i.e., [4], [16], [12] and the references
therein. In fact the model studied in [4, 16] which has been proposed for
heat conduction makes use of the following relation between heat flux
and temperature, i.e.,

(1.1) TU;y = —u; — KT; + pAu; +vu;;  in R X (0,00),

where u; denotes the heat flux and T the temperature. The coefficients
T, K, u and v are positive constants, A is the Laplace operator, and a
comma has been used to indicate partial differentiation with respect to
the corresponding coordinate. In addition we have adopted the summa-
tion convention in which a repeated Latin index in any term indicates
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summation over that index from one to three and a repeated Greek in-
dex indicates summation from one to two. Associated with this system
(1.1) is the temperature equation

(12) CT: = —U;;,

where ¢ is a positive constant. In [12], the authors investigated ques-
tions of uniqueness of the forward and backward in time problems for
(1.1), (1.2) as well as decay and growth (in time) properties of solution.
For the backward in time problem Franchi and Staughan [4] investi-
gated how the solution varied with the reaction time 7, and studied, in
particular, perturbation of 7 = 0. Recently Payne and Song {13, 14]
investigated decay (or growth) and continuous dependence type results
of (1.1) and (1.2) defined on a semi-infinite cylinder with homogeneous
data on the lateral surface and examined the question of spatial decay.
In this paper we investigate the asymptotic behavior of solutions to a
generalized heat conduction with an added dissipation term, defined on
a three-dimensional semi-infinite cylinder, i.e.,

(1.3) Ty = —u;; + (AT,

where ( is a positive constant. In [16], the authors investigated questions
of continuous dependence on initial-time and spatial geometry for (1.1)
and (1.3).

Decay results of Saint-Venant type, particularly for elliptic boundary
value problems are numerous (see, e.g., Horgan and Knowles [7] and
Horgan [5, 6]). Similar results for solutions of time-dependent systems
are of more recent origin beginning perhaps with the work of Boley [2].
Some of these latter results are cited in [7], but later results for nonlinear
problems have been obtained by Song [17], Ames et al. {1, Song and
Payne [15], Lin and Payne [10, 11}, Horgan [5, 6], and Payne and Horgan
[9]. More recently these Saint-Venant type and continuous dependence
type results have been established as a consequence of more general
Phragmén-Lindelof type alternative results (see, e.g., Horgan and Payne
(8], Flavin et al. [3], Lin and Payne [10]). It is this Phragmén-Lindel6f
type alternative and continuous dependence on the parameter ¢ that we
derive in this paper. In particular, to render decay estimate explicit, we
pattern after the analysis of Payne and Song [15, 13], and Horgan and
Payne [9] in Section 4.
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2. Statement of the problem

We are interested in heat conduction in a semi-infinite cylinder R
with arbitrary cross section D. The boundary 0D of D is assumed
to be smooth enough to permit application of the divergence theorem.
To make the geometry specific we assume that the generators of R are

parallel to the zs-axis and that the finite end lies in the plane z3 = 0.
Thus

(2.1) R = {(z1, %2, 23) : (z1,72) € D, z3> 0}.

We also use the notation

(22) R, = {(.’131,1132,.’1,'3) : (1'1,.’152) s D7 T3> 22> 0},

and

(23) D, = {(.’171,.152) €D, xz3= Z}.

The initial and boundary conditions associated with (1.1) and (1.3) are
(2.4) u;(zy, Z9,23,8) =0 on 9D, 0<t, z3 < o0,

(2.5) T(zy,z9,23,t) =0 on 0D, 0<t, z3 < o0,

(2.6) ui(z1,22,0,8) = f; on D x [0, 00),

(2.7) T(x1,72,0,t) =g on D x [0,00),

(28) u,-(xl,xg,a:g,O), T(IL‘],IL‘Q,CE3,0) =0 in Rx {0}

We assume that the prescribed vector function f; and the function g are
differentiable and vanish on dD.

To study the decay or growth of solutions to (1.1), (1.3), (2.4)-(2.8),
we introduce a cross sectional energy function

t
(2.9) E(zt) = —/ / (pusu; 3 + vugu;j — kusT + k(TT3) dAdy.
0 JD,

We show that as z — oo, either E(z,t) decays to zero or —E(z,t)
becomes unbounded. We derive the rate of decay (or growth) explicitly.
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We note that for 2 > 2z, F(z,t) may be expressed, on using the
divergence theorem and the initial-boundary conditions of (2.4)~(2.5) as

E(Z, t) = E(ZO~, t)
t pz
- / / / (ps i + v + wyw; + wCTT ) dAdEdn
0 4] DE
1 ¥4
-5 / / (Tuju; + £cT?) dAdE.
2 20 v D¢

In (2.10) the final integral on the right-hand side is evaluated at time ¢.
On the other hand if E(z,t) — 0 as z — oo, then

(2.10)

t pz
E(z,t) = / / / (,uu,-,jui,j + I/U?,i + uyu; + n(T,iT,i) dAdgdn
0 4 D§

+ 1 / / (Tuiui + /{cTQ) dAdE.
2 20 D{

Clearly if we show that E(z,t) decays to zero and bound E(z,t) in terms
of explicit decaying function of z, then from (2.11) we observe that this
is in fact an energy bound. On the other hand if —E(z,t) is bounded
below by an unbounded function (z,t), then (2.10)

(2.11)

¢
(2.12) / / (s jui ; + vul, + uu; + k(TT;) dAdn
0 JR/R,

1
+ - / ('ruiui + ncTQ) dz > x#(z,t) + E(0,1).
2 Jryr,

The aim of the first part of this paper is to derive differential inequali-
ties for E(z,t) which will imply that E(z,t) either grows exponentially in
z or decays exponentially in z as z — oo. Note that E(z,t) is indefinite
while

t
(2.13) S

- % / (TuiudA+ xcT?) dA,
D,

is negative.
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In the next section we will be using the following Poincaré inequality.
Let 9(z1, z2) be differentiable in D and vanish on 8D. Then

(2.14) f VA<t / ot add,
p AJp

where A is the first eigenvalue in the fixed membrane problem for D.
In what follows, lower bounds for A will suffice. For instance, A is a
monotone function of domain; also

(2.15) A > mig AT,

where j; is the first zero of the Bessel function Jy(z), and A denotes the
area of D.

3. An energy inequality

We first write

(3.1) E(z,t) = I,(2,t) + Ix(2,t) + I3(2, 1),
where
(3.2) I(z,t) // ;g + vugu; ;) dAdn,
t
(33) Liz,t) = / / wsTdAdn,
0 2
and
t
(3.4) In(z,t) = —KC / / TTdAdn.
0 Jp,

Using Schwarz’s inequality and rearranging we have

}I1|<// 1~auuz+%gouiui

v vB 5
+2auz 3U; 3 + — 2ﬁ Ug + _2_‘u],]} dAdn,

for positive constants a, 3,(< 1) to be chosen. Choosing

(3.6) a=1, pg=v"2 o=1,

(3.5)
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we are led to
(3.7) ]| € —— —.

Now for [, upon using Schwarz’s inequality and the arithmetic-geometric
mean inequality we have for arbitrary positive 5

P t 1/2 ¢ 1/2
(1o < i3 < / / u%dAdn) ( / / T2dAd77>
A 0 JD, 0 Jb,
. t t
< 2 —1 )
< o (61/0 /Dz usdAdn + [ /0 /Dz T‘aT,adAdn)

Similarly for ||, we find for arbitrary positive 3,

t i1
(3.9) |13 < —%6—2 <ﬁ2/ / TZQT,adAdn—l—ﬂ{l // T%dAdn) )
2\ 0 JD, 0Jp, '

Combining I and I3 yields

¢ t
K K
|L| + L] < é%/()/[; uddAdn + ﬁl/—zﬂz_l /O/D T,%dAd'f?

(3.10) t
R (g1
t oz B + CﬁQ)/o /[)z T, T ,dAdy.

Choosing £, = v/2/¢, B = 1/+/2, we find

K V2 1 \ dF
. < (X2, - )2E
Inserting back (3.7) and (3.11) into (3.1), we obtain
OF
. < -yl 2
3.12) 1Bt < 2,
where
/2 K V2 o1 -
(3.13) Y= [—2—“+W (T+—\/§>

To deal with this inequality of (3.12), we follow the procedure used in
[3] and [8]. We recall that OE/dz is negative. Thus for some value of
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z, for instance z = 2y, F(z,t) < 0, then E(z,t) < 0 for all subsequent
values of z;. In this case

Integrating this, we have
(3.15) —E(z,t)e™ ") > _F(z, t).

Clearly —E(z, t) increases asymptotically at least exponentially fast, i.e.,
(3.16) lim e™*[-E(z,t)] > M

where M is a positive constant. Thus if there is a 2y € (0, c0) such that
E(z,t) <0, then |E(z,t)| cannot remain bounded for all 2.
We next consider the case in which there is no such zg, i.e., E(z,t) > 0
for all z > 0. In this case, we write (3.12) as
oF

(3.17) 5, TTE<O,

An integration furnishes
(3.18) E(z,t) < E(0,t)e

We note that the decay rate v is conservative since we do not pursue
the optimal choices for arbitrary constants in (3.5) and (3.10). Clearly
if lim, o E(z,t) = 0, then E(z,t) may be rewritten as

E(z,t) / / s U 5+ VufZ + uu; + /c(Tﬂf,») dxdn

2 / (7’uzuZ + I‘&CTZ) dx.

z

(3.19)

Thus we have established

THEOREM 3.1. Let (u;,T) be a solution of (1.1), (1.2), (2.4)-(2.8),
then for fixed t either

t
lim [e‘"’z {/ / (s jui; + vl + wiu; + k(T T;) dedn
Fmee 0 JR/R,

(3.20) + 1/ (Tuiui + nch) dx}} > Const,
2 Jryr,
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or

t
/ / (s jui 5 + zxufz + ww; + £(TT;) dzdn
o Jr,
1
+

(3.21) 5/ (Tuju; + kcT?) dz < E(0, t)e .

Here vy is given by (3.13).

Assuming that F(z,t) does not grow exponentially at infinity it fol-
lows that (3.21) holds, but to make this inequality explicit we need a
bound for the total energy E(0,¢). This is provided in the next section.

4. A bound for E(0,t)

In this section we indicate how we can bound the total energy as-
suming that (3.21) holds. We introduce functions of w; and ¢ which
satisfy the conditions (2.4)-(2.8) imposed on u; and ¢, and tend to zero
as 3 — 00. Then from (3.1), upon integration by parts using the diver-
gence theorem we have

¢ ¢
E(0,t) = —u/O/D wiu; sdAdn — V/O/D wsu; ;dAdn
0 0
t t
+& / / wzpdAdn — k( / ¢T'sdAdn
0 Dy 0 Do

t t t
= ﬂ/ / wi’jui,]-dxdn + l// / wi,iuj’jdz:dn - KI/ / w;;qﬁdAdn
0 JR 0JR 0 JDy

t
+ / / w; (pAu; + vu; 5 — kT;) dzdn
0 JR

t t
+ K¢ / / ¢ dzdn + K / / ¢ATdzdy.
0o JR 0o JR
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Using the differential equations for u; and T, and integrating further
with time, one finds

t t
= ,u/ / w,-,ju,-‘jd:tdn + l// / 'I.U,'_{ijjdl‘d’l]
0 JR 0JR
t t
+ K / / wypdAdn + k¢ / / ¢;T;dxdn
0 /Dy 0 JR

1
+ +/ / wi(Tu, + W + £T;)dzdn
R

'3
+r / / O(CTy + wijdzdn
0 JR

t 1
=u//w,-,,-u,;]—da:dn+u//w,-,,-uj,jdzd'l]
o Jr 0 JRr
12 t
+ K / / wypdAdn — / / ui(Tw;y — w;)dzdn
o /oy 0o Jr
t t
+n/ / w;T,-d:vdn—n//¢,,,Tdrdn
o Jr oJr
t
—n/ / uid),,-dxdn+T/w,-uid:c—f-nc/(psz.
oJr R R

Using Schwarz’s inequality, the arithmetic-geometric mean inequality,
we obtain for arbitrary positive constants ¢;’s

E(0,t) < 3% //u,]uijdzdn+ -———//w,]w,]dxdn
//uudzdn+ //w da:dn+n// wipd Adn

2€2 Do

+ —3/ / wiudedn + — / /(‘rw,-,,, — w;)(Tw;, — w;)dzdn
2 Jo Jr 2¢3 Jo Jr
€4 t 1 t

+ —//w,-w,-dzdn+ —//T,;Tﬁxdn
2 JoJr 2¢s Jo Jr
€5 ' 2 1 t 2

+ — ¢, dzdn + — T dxdn
2hJrn

13

+ % / / w;udedn + —/ b0 dxdn

2 Jo Jr R

TE T
+ =2 w;w; dT + —/u.,-u,-dx
f R 2¢7 Ju

45 / Hde + £ / T?de.
2¢q
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Now this may be rewritten as

E(0,t) < F(w;, ¢ //uzjuzjdmdn+ //u“dmdn
.461 262
63 66
=4+ — sudrd —_ — T
+2 /O/Ruu mn+<2€4+2€5)\>//T dxdn

where

F(w;, ¢ 61#//w”w”dxdn—{———//w”dacdn
// (Tw;y — wi)(Twiy — w; dmdn%——//umu ;dxdn
263
—//¢2dmdn+—//¢¢dmdn+n// wspdAdn
Dy

KRCE
wywdz + —— & / Hdx

Choosing € = €3 = €3 = 1, €4 = 1/k(, €5 = ¢4/, and €; = 5 = 2, we
find

2 R

E(O’ t) < F(wi: ¢) + E(O: t)/2
It follows from this that an upper bound for the total energy is given by
(4.1) E(0,t) < 2F(w;, ¢).

Modeling after the work of Payne and Song [13, 15], and Horgan and
Payne [9], we set a special choice for w; and ¢ satisfying (2.4)-(2.8)

’LUZ'(.’B], T2, T3, t) - fi(xlr T, t)e_kza)

kzxy

(4.2) .
¢(.’L'1,£L'2,1173,t) :g(xla‘T?)t)e )

where k is an arbitrary positive constant at our disposal (to be deter-
mined later). It remains to compute the upper bound for E(0,¢). On
computing (4.1) we find

C
(4.3) ﬂw@=f+@+@h
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o [t vt
o =t / / fiafipdAdn + - / / £ dAdn
4 Jo Jp, 4/ Jp,” "

1 t
w3 [ o= sats - saaaan+ 3 [ g

1 t 1/t
o gt [ @andns g [ [ gagadaan
4 0 JDp ' 4 Jo Jp,

+ 2 g,
2 I,

where

t t
Co==5 [ [ foafidtdnn [ [ fugdsan
0 Do Q DO

t {
Cy = / / (oo + f2)dAdy + ~ / f2dAdn,
4 Jy Jp, 4 Jo Jb,

Among all such functions of the form (4.3), we make the choice of k
which minimizes F(w;, ¢), i.e.,

(4.4) k= (Cy/C3)"2.
With this choice we obtain
(4.5) F(w;, ¢) = 2(0103)1/2 + Cs.

The insertion of (4.5) into (4.1) and the result back into (3.21) yields a
bound for E(0,t) in terms of data and the given geometry.

5. Continuous dependence on the parameter ¢

In this section we investigate the effect of a small perturbation of the
parameter ( on the decay of solution. It would of course be possible
to investigate the effects of the perturbation of other parameters, the
arguments being similar to those which we shall employ. We denote by
vi(z,t) and S(z,t) the solutions of (1.1), (1.3), (2.4)-(2.8) with ¢ re-
placed by the constant {;. We could allow u; and v; to satisfy different
conditions on z3 = 0, but since the problems are linear we may decom-
pose and treat the two effects separately. The problem resulting from
perturbation of the data is precisely the problem treated in Section 3
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so we restrict our attention to the case in which u; = v; and T = S on
z3 = 0. If we now set
(51) w; = U; — VU, 0=T—S,

we note that w; and 8 satisfy

(5.2) Twy = —w; — KO, + pAw; +vw;; in R x (0,00),
(5.3) ;= —w;; +CAO-+CAS in R x(0,00),

where { = ¢ - ¢y,

(5.4) wi(z1, 2o, 23,t) =0, on 0D, 0<t, z3< o0,
(5.5) 6(z1,z2,23,t) =0, on 0D, 0<t, z3< 00,

(5.6) wi(z1,22,0,t) =0, in Dy x (0, 00),

(57) 9(1‘1, Ta, O, t) =0, in —D_() X (0, OO),

(5.8) w;(z1, To, 23, 0), S(z1,%2,23,0) =0 in R x {0}.

We further assume that (u;, T') and (v;, S) satisfy (3.21). We now intro-
duce a function ®(z,t) for z, t > 0, given by

(2, 1) / / o, jwi; + v + wiw; + £(6,:8,;) dzdn

(5.9)
2/ (Twiw; + keh?)dz.
Clearly
o ! 2
9z (B35 + ve; + @i + #(6,6,,)dAdn
(5.10) 0P

+_1./ (Twiwi—{-ncH?)dA}
3 I,

On the other hand an integration of (5.9) by parts yields

®(2,1) / / w3 + vosw; ; — kwsl + k(00 3) dAdn

+1¢Z// OASdxdn.
0 z

(5.11)
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Using (3.17) we obtain

d(z t)<———+ C/ 0533d:£d7)—/<;(// 6 oS odzdn
R, :

18@
= _:y“é—+fﬁ< (K1 KQ)

(5.12)

Now

t t
(5.13) K2< / / 0%dzdn / / % dzdn.
0 2 0 JR,

To bound the second term in (5.13) we observe that under additional
assumptions on the smoothness of f; and 8D together with appropriate
compatibility assumptions on 8D x {0} for ¢t > 0, the system (v;3,S3)
satisfies (1.1), (1.3), (2.4)-(2.8) and hence using the results of Section 3
we conclude that

t
(5.14) // 5,335,33dl‘d77S—1-E1(0,t)e_7(t)z,
o JR, K(y

where we define a higher-order energy as

1(0,1) / / PV g + vvl g + vigvis + £(15,:353) dzdn

(5.15)
/(TUZ3U13+I€CS2)
"2 R
Thus
Kf_ElOt g // 6%dzdn
(5.16)

E1(0 5, /
: 0 .0 dzdn.
- I‘-')\Cl 0 v "

Similarly, using (3.21) we obtain

K2< // 046, drdn// S 58S pdzdn

0 t) —’)’Z

(5.17)
/ 6,0 jdzdn.
KC1 R,

<
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Using the triangle inequality we find
|K1 — Kol < |Ki| + | Ky
< (G RE(0,1) + A EY(0, 1))

t 1/2
X (/ / 9,j9,jd2:d77) .
0 JR,

Returning to (5.10) we have

(5.18)

(5.19) ®(z,t) < —%%’—0 + ¢ C(t)e " 2p V2 (2, 1),
where
(5.20) C(t) = () 2{EY2(0,t) + A2 E[2(0,1)}.

This inequality integrates to give
(5.21) Y2(z,t) < {®Y4(0,t) + 2 C(t)}e 2.

From (5.11) we observe that

¢
®(0, t) :KZ//QASdmdn
0oJR

(5.22) /

= —k( /0 /R 8.;S ;dzdn.
Thus
(5.23) ®(0,) < (¢ {®(0,8)E(0,1)}'1?,
which is
(5.24) ®'/%(0,1) < {(¢G) TV {E(0, )},

The insertion of (5.24) into (5.21) gives the desired bound,
(5:25)  ®(z1) <T {(CG) VB0, ) + 2 C(t) e

This inequality exhibits not only exponential decay in z, but also shows
that the amplitude term becomes small as (; — (. To make (5.25)
explicit one would need a bound for E;(0,¢) in terms of data; however,
we do not pursue this question in the present investigation.
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