• Title/Summary/Keyword: artificial media

Search Result 695, Processing Time 0.024 seconds

Optimal Conditions for the Mycelial Growth of Coprinus comatus Strains

  • Jang, Myoung-Jun;Lee, Yun-Hae;Liu, Jun-Jie;Ju, Young-Cheol
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.103-108
    • /
    • 2009
  • The principal objective of this study was to acquire basic data regarding the mycelial growth characteristics for the artificial cultivation of Coprinus comatus. 12 URP primers were employed to evaluate the genetic relationships of C. comatus, and the results were divided into three groups. Among six kinds of mushroom media, MYP medium was selected as the most favorable culture medium for C. comatus. The optimal temperature and pH ranges for the mycelial growth of C. comatus were $23{\sim}26^{\circ}C$ and pH 6${\sim}$8, respectively. The carbon and nitrogen sources for optimal mycelial growth were sucrose and tryptone, respectively.

Creating Deep Learning-based Acrobatic Videos Using Imitation Videos

  • Choi, Jong In;Nam, Sang Hun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.713-728
    • /
    • 2021
  • This paper proposes an augmented reality technique to generate acrobatic scenes from hitting motion videos. After a user shoots a motion that mimics hitting an object with hands or feet, their pose is analyzed using motion tracking with deep learning to track hand or foot movement while hitting the object. Hitting position and time are then extracted to generate the object's moving trajectory using physics optimization and synchronized with the video. The proposed method can create videos for hitting objects with feet, e.g. soccer ball lifting; fists, e.g. tap ball, etc. and is suitable for augmented reality applications to include virtual objects.

Pruning for Robustness by Suppressing High Magnitude and Increasing Sparsity of Weights

  • Cho, Incheon;Ali, Muhammad Salman;Bae, Sung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.862-867
    • /
    • 2021
  • Although Deep Neural Networks (DNNs) have shown remarkable performance in various artificial intelligence fields, it is well known that DNNs are vulnerable to adversarial attacks. Since adversarial attacks are implemented by adding perturbations onto benign examples, increasing the sparsity of DNNs minimizes the propagation of errors to high-level layers. In this paper, unlike the traditional pruning scheme removing low magnitude weights, we eliminate high magnitude weights that are usually considered high absolute values, named 'reverse pruning' to ensure robustness. By conducting both theoretical and experimental analyses, we observe that reverse pruning ensures the robustness of DNNs. Experimental results show that our reverse pruning outperforms previous work with 29.01% in Top-1 accuracy on perturbed CIFAR-10. However, reverse pruning does not guarantee benign samples. To relax this problem, we further conducted experiments by adding a regularization term for the high magnitude weights. With adding the regularization term, we also applied conventional pruning to ensure the robustness of DNNs.

Active Photonic Metadevice Technology (능동 광메타 디바이스 기술 동향)

  • Hwang, C.S.;Hong, S.H.;Hwang, C.Y.;Cho, S.M.;Kim, Y.H.;Suh, D.;Sim, J.S.;Lee, J.I.;Lee, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.81-93
    • /
    • 2018
  • Metamaterials are artificial media that can control the properties of waves at will. Active photonic metadevice technologies cover the device and material technologies that control the visible and IR light through an external signal (mainly an electrical signal). The application areas of active photonic metadevices are tremendous for example holography, active HOE, bio imaging, IR imaging, telecommunication, and optoelectronic devices. In this paper, the technical trends and prospects of active metamaterials, active meta holography, active meta devices, nano-optical telecommunication devices, and IR imaging meta devices are reviewed.

Fake News Detection Using Deep Learning

  • Lee, Dong-Ho;Kim, Yu-Ri;Kim, Hyeong-Jun;Park, Seung-Myun;Yang, Yu-Jun
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1119-1130
    • /
    • 2019
  • With the wide spread of Social Network Services (SNS), fake news-which is a way of disguising false information as legitimate media-has become a big social issue. This paper proposes a deep learning architecture for detecting fake news that is written in Korean. Previous works proposed appropriate fake news detection models for English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shorter sentences than English even with the same meaning; therefore, it is difficult to operate a deep neural network because of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-based deep learning architectures and "Fasttext" which is a word-embedding model learned by syllable unit. After training and testing its implementation, we could achieve meaningful accuracy for classification of the body and context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.

A Study on Metaverse Hype for Sustainable Growth

  • Lee, Jee Young
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.72-80
    • /
    • 2021
  • Metaverse is an immersive 3D virtual environment, a true virtual artificial community in which avatars act as the user's alter ego and interact with each other. If we do not manage the hype for the metaverse, which has recently been receiving a surge in interest, the metaverse will fail to cross the chasm. In this study, to provide stakeholders with insights for the successful introduction and growth of the 3D immersive next-generation virtual world, metaverse, we analyzed user-side interest, media-side interest, and research-side interest. For this purpose, in this study, search traffic, news frequency and topic, and research article frequency and topic were analyzed. The methodology and results of this study are expected to provide insight for the stable success of metaverse transformation and the coexistence of the real world and the virtual world through hyper-connection and hyper-convergence.

Learning Algorithms in AI System and Services

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1029-1035
    • /
    • 2019
  • In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.

Exploring the Key Factors that Lead to Intentions to Use AI Fashion Curation Services through Big Data Analysis

  • Shin, Eunjung;Hwang, Ha Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.676-691
    • /
    • 2022
  • An increasing number of companies in the fashion industry are using AI curation services. The purpose of this study is to investigate perceptions of and intentions to use AI fashion curation services among customers by using text mining. To accomplish this goal, we collected a total of 34,190 online posts from two Korean portals, Naver and Daum. We conducted frequency analysis to identify the most frequently mentioned keywords using Textom. The analysis extracted "various," "good," "many," "right," and "new" at the highest frequency, indicating that consumers had positive perceptions of AI fashion curation services. In addition, we conducted a semantic network analysis with the top-50 most frequently used keywords, classifying customers' perceptions of AI fashion curation services into three groups: shopping, platform, and business profit. We also identified the factors that boost continuous use intentions: usability, usefulness, reliability, enjoyment, and personalization. We conclude this paper by discussing the theoretical and practical implications of these findings.

Data Preprocessing Techniques for Visualizing Gas Sensor Datasets (가스 센서 데이터셋 시각화를 위한 데이터 전처리 기법)

  • Kim, Junsu;Park, Kyungwon;Lim, Taebum;Park, Gooman
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.21-22
    • /
    • 2021
  • 최근 AI(Artificial Intelligence)를 기반으로 정밀한 가스 성분 감지를 위한 후각지능(Olfactory intelligence) 기술에 연구가 활발히 진행 중이다. 후각지능 학습데이터는 다른 감지 방식의 가스 센서들이 동시에 적용되는 멀티모달리티의 특성을 지니며 또한, 공간상에 분포된 센서 배열을 통해 획득된 다차원의 시계열 특성을 지닌다. 따라서 대량의 다차원 데이터에 대한 정확한 이해와 분석을 위해서는 데이터를 전처리하고 시각화할 수 있는 기술이 필요하다. 본 논문에서는 후각지능 학습을 위한 다차원의 복잡한 가스 데이터의 시각화를 위해 잡음 등의 불필요한 값을 제거하고, 데이터가 일관성을 가지도록 하며, 데이터의 차원을 시각화 가능하도록 축소하기 위한 전처리 방법을 제시한다.

  • PDF

Music Composition with Collaboratory AI Composers

  • Kim, Haekwang;You, Younghwan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.23-25
    • /
    • 2021
  • This paper describes an approach of composing music with multiple AI composers. This approach enriches more the creativity space of artificial intelligence music composition than using only one composer. This paper presents a simple example with 2 different deep learning composers working together for composing one music. For the experiment, the two composers adopt the same deep learning architecture of an LSTM model trained with different data. The output of a composer is a sequence of notes. Each composer alternatively appends its output to the resulting music which is input to both the composers. Experiments compare different music generated by the proposed multiple composer approach with the traditional one composer approach.

  • PDF