(그림 1) 능동 메타 픽셀 개념도
(그림 2) (a) 상 변화 물질 및 (b) 그래핀 기반의 재구성 가능한 홀로그램
(그림 3) ITO 박막을 이용한 능동 메타 소자
(그림 4) 다이오드를 이용한 능동 메타 소자
(그림 5) 가역 전착 기술을 이용한 위상 변조 소자의 개념도
(그림 6) 가역 전착 기술을 이용한 홀로그래피 소자의 구조와 동작 영상
(그림 7) (a) 메타표면 기반 안테나 및 (b) 열 질량 조절 구조와 (c) 전기 특성
(그림 8) 전압 인가를 통한 메타표면의 흡수 대역 천이, 분극 및 반사광 특성 조절
References
-
V.G. Veselago, "The Electrodynamics of Substances with Simultaneously Negative Values of
${\varepsilon}$ and${\mu}$ ," Sov. Phys. Uspekhi, vol. 10 , no. 4, 1968, pp. 509-514. https://doi.org/10.1070/PU1968v010n04ABEH003699 - J.B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett., vol. 85, 2000, Article no. 3966.
- D.R. Smith et al., "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett., vol. 84, 2000, Article no. 4184.
- D. Schurig et al., "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Sci., vol. 314, Nov. 2006, pp. 977-980. https://doi.org/10.1126/science.1133628
- N. Fang et al., "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Sci., vol. 308, Apr. 2005, pp. 534-537. https://doi.org/10.1126/science.1108759
- Z. Liu et al., "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Sci., vol. 315, no. 5819, Mar. 2007, p. 1686. https://doi.org/10.1126/science.1137368
- N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Sci., vol. 317, no. 5845, Sept. 2007, pp. 1698-1702. https://doi.org/10.1126/science.1133268
- J. Valentine et al., "Three-Dimensional Optical Metamate-Rial with a Negative Refractive Index," Nature, vol. 455, Sept. 2008, pp. 376-379. https://doi.org/10.1038/nature07247
- J.K. Gansel et al., "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Sci., vol. 325, no. 5947, Sept. 2009, pp. 1513-1515. https://doi.org/10.1126/science.1177031
- G.V. Naik, V. M. Shalaev, and A. Boltasseva, "Alternative Plasmonic Materials: Beyond Gold and Silver," Adv. Mater., vol. 25, no. 24, June 2013, pp 3264-3294 https://doi.org/10.1002/adma.201205076
- H. Caglayan et al., "Near-Infrared Metatronic Nanocircuits by Design," Phys. Rev. Lett., vol. 111, Aug. 2013, Article no. 073904.
- I. Liberal and N. Engheta, "Near-Zero Refractive Index Photonics," Nature Photon., vol. 11, 2017, pp. 149-158 https://doi.org/10.1038/nphoton.2017.13
- W. Li et al., "Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber," Adv. Mater., vol. 26, no. 47, Dec. 2014, pp. 7959-7965 https://doi.org/10.1002/adma.201401874
- U. Guler et al., "Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide," Adv. Opt. Mat., vol. 5, No. 7, Apr. 2017, Article no. 1600717.
- M. Chirumamilla et al., "Large-Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars," Adv. Opt. Mat., vol. 5, no. 22, Nov. 2017, Article no. 1700552.
- O. Balci et al., "Electrically Swichable Metadevice vis Graphene," Sci. Adv., vol. 4, no. 1, Jan. 2018, pp. 1749:1-1749:9.
- T.T. Kim et al., "Electrically Tunable Slow Light Using Graphene Metamaterials," ACS Photon., vol. 5, no. 5, 2018, pp. 1800-1807. https://doi.org/10.1021/acsphotonics.7b01551
- T. Chung et al., "Au/Ag Bimetallic Nanocomposites as a Highly Sensitive Plasmonic Material," in Plasmonics, Springer US: USA, 2018.
- Y. Hashimoto et al., "Au-Ag-Cu Nano-Alloys: Tailoring of Permittivity," Sci. Rep., vol. 6, 2016, Article no. 25010.
- S. J. Kim et al., "Chemically Engineered Au-Ag Plasmonic Nanostructures to Realize Large Area and Flexible Metamaterials," ACS Appl. Mat. Inter., vol. 10, no. 30, 2018, pp. 25653-25659.
- D. Garoli et al., "Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared," ACS Photon., vol. 5, no. 8, 2018, pp. 3408-3414. https://doi.org/10.1021/acsphotonics.8b00676
- B.D. Willts et al., "Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples," ACS photon., vol. 3, no. 10, 2016, pp.1888-1896. https://doi.org/10.1021/acsphotonics.6b00400
- A.T. Fafarman et al., "Chemically Tailored Dielectric-to-Metal Transition for the Design of Metamaterials from Nanoimprinted Colloidal Nanocrystals," Nano Lett., vol. 13, no. 2, 2013, pp. 350-357. https://doi.org/10.1021/nl303161d
- A. Karvounis et al., "All Dielectric Phase Change Reconfigurable Metasurface," Appl. Phy. Lett., vol. 109, 2016, Article no. 051103.
- T. Paik et al., "Solution-Processed Phase-Change VO2 Metamaterials from Colloidal Vanadium Oxide (VOx) Nanocrystals," ACS Nano, vol. 8, no. 1, 2014, pp. 797-806. https://doi.org/10.1021/nn4054446
- X. Ni, A.V. Kildishev, and V.M. Shalaev, "Metasurface Holograms for Visible Light," Nature Commun., vol. 4, 2013, Article no. 3807.
- S. Larouche et al., "Infrared Metamaterial Phase Holograms," Nature Mater., vol. 11, 2012, pp. 450-454. https://doi.org/10.1038/nmat3278
- L.L. Huang et al., "Three-Dimensional Optical Holography Using a Plasmonic Metasurface," Nature Commun., vol. 4, 2013, Article no. 2808.
- G.-Y. Lee et al., "Complete Amplitude and Phase Control of Light Using Broadband Holographic Metasurfaces," Nanoscale, vol. 10, no. 9, 2018, pp. 4237-4245. https://doi.org/10.1039/C7NR07154J
- Q. Wang et al., "Optically Reconfigurable Metasurfaces and Photonic Devices Based on Phase Change Materials," Nature Photon., vol. 10, no. 1, 2015, pp. 60-65. https://doi.org/10.1038/nphoton.2015.247
- S.-Y. Lee et al., "Holographic Image Generation with a Thin-Film Resonance Caused by Chalcogenide Phase-Change Material," Sci. Rep., vol. 7, 2017, Article no. 41152.
- X. Li et al., "Athermally Photoreduced Graphene Oxides for Three-Dimensional Holographic Images," Nature Commun., vol. 6, 2015, Article no. 6984.
- L. Li et al., "Electromagnetic Reprogrammable Coding-Metasurface Holograms," Nature Commun., vol. 8, no. 1, 2017, Article no. 197.
- K. Dong et al., "A Lithography-Free and Field-Programmable Photonic Metacanvas," Adv. Mater., vol. 30, no. 5, Feb. 2018, Article no. 1703878.
- Y.-W. Huang et al., "Gate-Tunable Conducting Oxide Metasurfaces," Nano Lett., vol. 16, no. 9, 2016, pp. 5319-5325. https://doi.org/10.1021/acs.nanolett.6b00555
- O. Balci et al., "Electrically Switchable Metadevices via Graphene," Sci. Adv., vol. 4, no. 1, Jan. 2018, Article no. 1749.
- C. Huang et al., "Dynamical Beam Manipulation Based on 2-bit Digitally-Controlled Coding Metasurface," Sci. Rep., vol. 7, 2017, Article no. 42302.
- J.P. Ziegler and B. M. Howard, "Applications of Reversible Electrodeposition Electrochromic Devices," Sol. Energy Mater. Sol. Cells, vol. 39, no. 2-4, Dec. 1995, pp. 317-331. https://doi.org/10.1016/0927-0248(95)00067-4
- S. Araki et al., "Electrochemical Optical-Modulation Device with Reversible Transformation Between Transparent, Mirror, and Black," Adv. Mater., vol. 24, no. 23, June 2012, pp. OP122-OP126.
- S.M. Cho et al., "New Switchable Mirror Device with a Counter Electrode Based on Reversible Electrodeposition," Sol. Energy Mater. Sol. Cells, vol. 179, June 2018, pp. 161-168. https://doi.org/10.1016/j.solmat.2017.11.007
- S.M. Cho et al, "Switchable Holographic Device Based on Reversible Electrodeposition," Adv. Mater. Technol., 2018, https://doi.org/10.1002/admt.201800478
- L. Novotnu, N. van Hulst, "Antennas for light," Nat. Photonics, vol. 5, Fed. 2011, pp 83-90. https://doi.org/10.1038/nphoton.2010.237
- F. Capasso et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Sci., vol. 333, no. 6064, Oct. 2018, pp. 333-337.
- V.M. Shalaev et al., "Broadband Light Bending with Plasmonic Nanoantennas," Sci., vol. 335, no. 6067, Jan. 2012, p. 427. https://doi.org/10.1126/science.1214686
- E. Yablonovitch et al., "Optical Antenna Enhanced Spontaneous Emission," Proc. National Academy Sci. United States of Am., vol. 112, no. 6, Jan. 2015, pp. 1704-1709. https://doi.org/10.1073/pnas.1423294112
- S. Fortuna, "Integrated Nanoscale Antenna-LED for On-Chip Optical Communication," Technical Report, UCB/EECS-2017-144, 2017.
- Y.S. Kivshar et al., "Light-Emitting Halide Perovskite Nanoantennas," Nano Lett., vol. 18, no. 2, 2018, pp. 1185-1190. https://doi.org/10.1021/acs.nanolett.7b04727
- M.E. Badawe, T.S. Almoneef, and O.M. Ramahi, "A True Metasurface Antenna," Sci. Rep., vol. 6, 2016, Article no. 19268.
- J.-Y. Jung et al., "Infrared Broadband Metasurface Absorber for Reducing the Thermal Mass of a Microbolometer," Sci. Rep., vol. 7, 2017, Article no. 430.
- F. Yi et al., "Voltage Tuning of Plasmonic Absorbers by Indium tin Oxide," Appl. Phys. Lett., vol. 102, 2013, Article no. 221102.
- Y.W. Huang et al., "Gate-Tunable Conducting Oxide Metasurfaces," Nano Lett., vol. 16, no. 9, 2016, pp. 5319-5325. https://doi.org/10.1021/acs.nanolett.6b00555
- J. Park et al., "Dynamic Reflection Phase and Polarization Control in Metasurfaces," Nano Lett., vol. 17, no. 1, 2017, pp. 407-413. https://doi.org/10.1021/acs.nanolett.6b04378