• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.028 seconds

Event diagnosis method for a nuclear power plant using meta-learning

  • Hee-Jae Lee;Daeil Lee;Jonghyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1989-2001
    • /
    • 2024
  • Artificial intelligence (AI) techniques are now being considered in the nuclear field, but application faces with the lack of actual plant data. For this reason, most previous studies on AI applications in nuclear power plants (NPPs) have relied on simulators or thermal-hydraulic codes to mimic the plants. However, it remains uncertain whether an AI model trained using a simulator can properly work in an actual NPP. To address this issue, this study suggests the use of metadata, which can give information about parameter trends. Referred to here as robust AI, this concept started with the idea that although the absolute value of a plant parameter differs between a simulator and actual NPP, the parameter trend is identical under the same scenario. Based on the proposed robust AI, this study designs an event diagnosis algorithm to classify abnormal and emergency scenarios in NPPs using prototypical learning. The algorithm was trained using a simulator referencing a Westinghouse 990 MWe reactor and then tested in different environments in Advanced Power Reactor 1400 MWe simulators. The algorithm demonstrated robustness with 100 % diagnostic accuracy (117 out of 117 scenarios). This indicates the potential of the robust AI-based algorithm to be used in actual plants.

Automatic Generation of Bridge Defect Descriptions Using Image Captioning Techniques

  • Chengzhang Chai;Yan Gao;Haijiang Li;Guanyu Xiong
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.327-334
    • /
    • 2024
  • Bridge inspection is crucial for infrastructure maintenance. Current inspections based on computer vision primarily focus on identifying simple defects such as cracks or corrosion. These detection results can serve merely as preliminary references for bridge inspection reports. To generate detailed reports, on-site engineers must still present the structural conditions through lengthy textual descriptions. This process is time-consuming, costly, and prone to human error. To bridge this gap, we propose a deep learning-based framework to generate detailed and accurate textual descriptions, laying the foundation for automating bridge inspection reports. This framework is built around an encoder-decoder architecture, utilizing Convolutional Neural Networks (CNN) for encoding image features and Gated Recurrent Units (GRU) as the decoder, combined with a dynamically adaptive attention mechanism. The experimental results demonstrate this approach's effectiveness, proving that the introduction of the attention mechanism contributes to improved generation results. Moreover, it is worth noting that, through comparative experiments on image restoration, we found that the model requires further improvement in terms of explainability. In summary, this study demonstrates the potential and practical application of image captioning techniques for bridge defect detection, and future research can further explore the integration of domain knowledge with artificial intelligence (AI).

Real Time SW Sizing Model for FP-Based Fintech Software Development Project (FP 기반의 핀테크 소프트웨어 개발 프로젝트 실시간 규모 산정 모델)

  • Koo, Kyung-Mo;Yoon, Byung-Un;Kim, Dong-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.36-44
    • /
    • 2021
  • Estimation on SW Sizing applied to fintech is very difficult, a task requiring long time, it is difficult for client companies and developer companies to accurately calculate the size of software development. The size is generally estimated based on the experience of project managers and the general functional scoring method. In this paper, propose a model that can be applied to fintech development projects by quantitatively calculating the required functions from the user's point of view, measuring the scale, and calculating the scale in real time. Through the proposed model, the amount of work can be estimated prior to development and the size can be measured, and the M/M and the estimated quotation amount can be calculated based on the program list by each layer. In future studies, by securing size computation data on existing the Fintech Project in mass, research on accurate size computation would be required.

Study on driver's distraction research trend and deep learning based behavior recognition model

  • Han, Sangkon;Choi, Jung-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.173-182
    • /
    • 2021
  • In this paper, we analyzed driver's and passenger's motions that cause driver's distraction, and recognized 10 driver's behaviors related to mobile phones. First, distraction-inducing behaviors were classified into environments and factors, and related recent papers were analyzed. Based on the analyzed papers, 10 driver's behaviors related to cell phones, which are the main causes of distraction, were recognized. The experiment was conducted based on about 100,000 image data. Features were extracted through SURF and tested with three models (CNN, ResNet-101, and improved ResNet-101). The improved ResNet-101 model reduced training and validation errors by 8.2 times and 44.6 times compared to CNN, and the average precision and f1-score were maintained at a high level of 0.98. In addition, using CAM (class activation maps), it was reviewed whether the deep learning model used the cell phone object and location as the decisive cause when judging the driver's distraction behavior.

Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features

  • Kang, Jaeyong;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.37-44
    • /
    • 2021
  • Automatic classification of brain MRI images play an important role in early diagnosis of brain tumors. In this work, we present a deep learning-based brain tumor classification model in MRI images using ensemble of deep features. In our proposed framework, three different deep features from brain MR image are extracted using three different pre-trained models. After that, the extracted deep features are fed to the classification module. In the classification module, the three different deep features are first fed into the fully-connected layers individually to reduce the dimension of the features. After that, the output features from the fully-connected layers are concatenated and fed into the fully-connected layer to predict the final output. To evaluate our proposed model, we use openly accessible brain MRI dataset from web. Experimental results show that our proposed model outperforms other machine learning-based models.

Risk Prediction Model of Legal Contract Based on Korean Machine Reading Comprehension (한국어 기계독해 기반 법률계약서 리스크 예측 모델)

  • Lee, Chi Hoon;Woo, Noh Ji;Jeong, Jae Hoon;Joo, Kyung Sik;Lee, Dong Hee
    • Journal of Information Technology Services
    • /
    • v.20 no.1
    • /
    • pp.131-143
    • /
    • 2021
  • Commercial transactions, one of the pillars of the capitalist economy, are occurring countless times every day, especially small and medium-sized businesses. However, small and medium-sized enterprises are bound to be the legal underdogs in contracts for commercial transactions and do not receive legal support for contracts for fair and legitimate commercial transactions. When subcontracting contracts are concluded among small and medium-sized enterprises, 58.2% of them do not apply standard contracts and sign contracts that have not undergone legal review. In order to support small and medium-sized enterprises' fair and legitimate contracts, small and medium-sized enterprises can be protected from legal threats if they can reduce the risk of signing contracts by analyzing various risks in the contract and analyzing and informing them of toxic clauses and omitted contracts in advance. We propose a risk prediction model for the machine reading-based legal contract to minimize legal damage to small and medium-sized business owners in the legal blind spots. We have established our own set of legal questions and answers based on the legal data disclosed for the purpose of building a model specialized in legal contracts. Quantitative verification was carried out through indicators such as EM and F1 Score by applying pine tuning and hostile learning to pre-learned machine reading models. The highest F1 score was 87.93, with an EM value of 72.41.

Microcode based Controller for Compact CNN Accelerators Aimed at Mobile Devices (모바일 디바이스를 위한 소형 CNN 가속기의 마이크로코드 기반 컨트롤러)

  • Na, Yong-Seok;Son, Hyun-Wook;Kim, Hyung-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.355-366
    • /
    • 2022
  • This paper proposes a microcode-based neural network accelerator controller for artificial intelligence accelerators that can be reconstructed using a programmable architecture and provide the advantages of low-power and ultra-small chip size. In order for the target accelerator to support various neural network models, the neural network model can be converted into microcode through microcode compiler and mounted on accelerator to control the operators of the accelerator such as datapath and memory access. While the proposed controller and accelerator can run various CNN models, in this paper, we tested them using the YOLOv2-Tiny CNN model. Using a system clock of 200 MHz, the Controller and accelerator achieved an inference time of 137.9 ms/image for VOC 2012 dataset to detect object, 99.5ms/image for mask detection dataset to detect wearing mask. When implementing an accelerator equipped with the proposed controller as a silicon chip, the gate count is 618,388, which corresponds to 65.5% reduction in chip area compared with an accelerator employing a CPU-based controller (RISC-V).

Autoencoder-Based Defense Technique against One-Pixel Adversarial Attacks in Image Classification (이미지 분류를 위한 오토인코더 기반 One-Pixel 적대적 공격 방어기법)

  • Jeong-hyun Sim;Hyun-min Song
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1087-1098
    • /
    • 2023
  • The rapid advancement of artificial intelligence (AI) technology has led to its proactive utilization across various fields. However, this widespread adoption of AI-based systems has raised concerns about the increasing threat of attacks on these systems. In particular, deep neural networks, commonly used in deep learning, have been found vulnerable to adversarial attacks that intentionally manipulate input data to induce model errors. In this study, we propose a method to protect image classification models from visually imperceptible One-Pixel attacks, where only a single pixel is altered in an image. The proposed defense technique utilizes an autoencoder model to remove potential threat elements from input images before forwarding them to the classification model. Experimental results, using the CIFAR-10 dataset, demonstrate that the autoencoder-based defense approach significantly improves the robustness of pretrained image classification models against One-Pixel attacks, with an average defense rate enhancement of 81.2%, all without the need for modifications to the existing models.

Large Language Models-based Feature Extraction for Short-Term Load Forecasting (거대언어모델 기반 특징 추출을 이용한 단기 전력 수요량 예측 기법)

  • Jaeseung Lee;Jehyeok Rew
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.51-65
    • /
    • 2024
  • Accurate electrical load forecasting is important to the effective operation of power systems in smart grids. With the recent development in machine learning, artificial intelligence-based models for predicting power demand are being actively researched. However, since existing models get input variables as numerical features, the accuracy of the forecasting model may decrease because they do not reflect the semantic relationship between these features. In this paper, we propose a scheme for short-term load forecasting by using features extracted through the large language models for input data. We firstly convert input variables into a sentence-like prompt format. Then, we use the large language model with frozen weights to derive the embedding vectors that represent the features of the prompt. These vectors are used to train the forecasting model. Experimental results show that the proposed scheme outperformed models based on numerical data, and by visualizing the attention weights in the large language models on the prompts, we identified the information that significantly influences predictions.

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.