Abstract
Commercial transactions, one of the pillars of the capitalist economy, are occurring countless times every day, especially small and medium-sized businesses. However, small and medium-sized enterprises are bound to be the legal underdogs in contracts for commercial transactions and do not receive legal support for contracts for fair and legitimate commercial transactions. When subcontracting contracts are concluded among small and medium-sized enterprises, 58.2% of them do not apply standard contracts and sign contracts that have not undergone legal review. In order to support small and medium-sized enterprises' fair and legitimate contracts, small and medium-sized enterprises can be protected from legal threats if they can reduce the risk of signing contracts by analyzing various risks in the contract and analyzing and informing them of toxic clauses and omitted contracts in advance. We propose a risk prediction model for the machine reading-based legal contract to minimize legal damage to small and medium-sized business owners in the legal blind spots. We have established our own set of legal questions and answers based on the legal data disclosed for the purpose of building a model specialized in legal contracts. Quantitative verification was carried out through indicators such as EM and F1 Score by applying pine tuning and hostile learning to pre-learned machine reading models. The highest F1 score was 87.93, with an EM value of 72.41.