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Abstract: Bridge inspection is crucial for infrastructure maintenance. Current inspections based on 
computer vision primarily focus on identifying simple defects such as cracks or corrosion. These 
detection results can serve merely as preliminary references for bridge inspection reports. To generate 
detailed reports, on-site engineers must still present the structural conditions through lengthy textual 
descriptions. This process is time-consuming, costly, and prone to human error. To bridge this gap, we 
propose a deep learning-based framework to generate detailed and accurate textual descriptions, laying 
the foundation for automating bridge inspection reports. This framework is built around an encoder-
decoder architecture, utilizing Convolutional Neural Networks (CNN) for encoding image features and 
Gated Recurrent Units (GRU) as the decoder, combined with a dynamically adaptive attention 
mechanism. The experimental results demonstrate this approach's effectiveness, proving that the 
introduction of the attention mechanism contributes to improved generation results. Moreover, it is 
worth noting that, through comparative experiments on image restoration, we found that the model 
requires further improvement in terms of explainability. In summary, this study demonstrates the 
potential and practical application of image captioning techniques for bridge defect detection, and future 
research can further explore the integration of domain knowledge with artificial intelligence (AI). 
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1. INTRODUCTION 

Bridge inspection is crucial for infrastructure maintenance. In recent years, bridge inspection using 
computer vision has been extensively researched; however, these studies are often limited to the simple 
detection of cracks or corrosion [1-2]. The results of such detection can only serve as preliminary 
references for bridge inspection reports, and the generation of detailed reports still requires on-site 
engineers to describe the structural conditions through lengthy textual descriptions. These manual 
processes are typically time-consuming, costly, and prone to human errors. Furthermore, with the 
increasing number of aging bridges, the demand for analyzing a vast amount of bridge imagery also 
imposes significant work pressure on on-site engineers. Therefore, in light of this situation, we pose an 
important question: How can we improve the efficiency and accuracy of bridge inspections while 
simultaneously reducing the burden on professionals? 

The automatic generation of image captions is a complex task because of the need to explain and 
describe various visual elements in different contexts accurately. As a result, this problem has attracted 
much attention and led to significant research work in computer vision and natural language processing 
[3-4]. While existing techniques have made significant progress in natural image analysis, there is still 
much space for research to generate descriptions of bridge defects in the infrastructure automatically. 
Particularly, when dealing with bridge defects of great variety and complexity, there is a need for a 
method that can accurately capture and explain these complex visual features. 
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This study addresses these challenges by proposing an innovative framework to bridge the research 
gap. The framework combines a deep learning-based encoder-decoder architecture with an attention 
mechanism. Our goal is to automate the generation of descriptions in bridge inspection. By doing so, 
we improve the accuracy and efficiency of bridge inspections and significantly reduce the site engineers' 
workload. Furthermore, this lays the groundwork for automatically generating detailed bridge inspection 
reports. Subsequently, considering the well-known black-box property of deep learning, we also design 
comparative experiments based on image restoration to explore the accuracy and reliability of the 
generated descriptions. In conclusion, our approach will provide new ideas for the comprehensive 
application of artificial intelligence (AI) in the broader infrastructure field. 

2. RELATED WORK 

2.1. Defect detection 
In recent years, computer vision-based defect detection methods have been extensively studied and 

have demonstrated their significant value in several fields, especially in industry, infrastructure 
maintenance, and production quality control. These methods utilise advanced image processing 
techniques and machine learning algorithms. In particular, a typical deep learning model, convolutional 
neural network (CNN), can learn complex features and patterns from many labelled images and has 
achieved remarkable success in automatically identifying and classifying various defects. Cha et al. [5] 
proposed a method to detect concrete cracks using the deep architecture of CNN to learn image features 
automatically without traditional image processing techniques, demonstrating up to 98% accuracy in 
various complex real-world scenarios. Zhang et al. [6] proposed an improved single-stage you only look 
once (YOLOv3) detector by introducing novel migration learning and enhancement algorithms, which 
achieves efficient and accurate detection of multiple damage types on concrete bridge decks, surpassing 
traditional deep learning methods in terms of intersection over union (IoU) evaluation metrics. Mundt 
et al. [7] solved the problem of efficiently identifying multiple defects in bridge concrete by employing 
MetaQNN and efficient neural architecture search techniques. They innovatively introduced a 
convolutional neural network architecture with fewer parameters and higher accuracy. Forkan et al. [8] 
proposed CorrDetector, an integrated AI framework based on CNN models for infrastructure structure 
identification and corrosion detection. These studies show that due to CNN's significant local feature 
learning capability, using them as feature extractors or variant models can yield good detection results 
in defect identification. 

However, most of these detections focus on crack segmentation or corrosion detection and fail to 
provide detailed descriptions for bridge images. This implies that when generating detailed bridge 
inspection reports, the defect detection results still necessitate significant secondary processing by 
engineers. For engineers who are already facing a workforce shortage, this results in high work pressure. 

2.2. Image captioning techniques 

Image captioning techniques combine computer vision and natural language processing to recognize 
image content and automatically generate descriptive text. Traditional image captioning models mainly 
include retrieval and template-based methods [9-10]. With the development of deep learning, especially 
the application of CNN and recurrent neural network (RNN), image captioning technology has been 
dramatically enhanced [11]. Vinyals et al. [12] first introduced the encoder-decoder framework for 
generating captions. Xu et al. [13] introduced the attention mechanism, focusing on salient objects in 
the image to further improve the quality of image captions. Liu et al. [14] proposed using textual 
attention mechanisms to increase the completeness of the conveyed information and combined label 
generation with textual attention and image captioning. 

Despite significant progress in image captioning technology, it still faces some limitations. Firstly, 
most existing models are mainly trained on general datasets like MS-COCO and Flickr30k, which 
significantly limits their effectiveness and generalizability in specific domains when the general training 
data and the unique requirements of the application domain differ. Secondly, although image captioning 
technology has been widely applied in medicine and remote sensing [15-16], only a few studies are 
being conducted in infrastructure. There is considerable research space for bridge defect detection and 
the automatic generation of inspection reports. Future work needs to explore training datasets more 
suitable for specific domain requirements, develop models that can accurately understand and describe 
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the complex characteristics of these domains, and create more intelligent and accurate image captioning 
systems to meet the diverse needs of practical applications. 

3. METHODOLOGY 

3.1. Overall framework 

The proposed overall framework is shown in Fig. 1, which can automatically generate appropriate 
textual descriptions from bridge images. The core of the framework is the encoder-decoder architecture, 
seamlessly integrated with the attention mechanism to provide fine-grained analysis of images. The 
model is trained and fine-tuned to accurately identify and describe image defects, facilitating a more 
streamlined and efficient defect evaluation process. 

Figure 1. The proposed overall framework 

3.2. Encoder-Decoder architecture 

The encoder uses the ResNet-101 model as a pre-trained network in this architecture. It is a variant 
of CNN known for its depth and ability to extract detailed feature vectors from large amounts of visual 
data. This pre-training enhances the model's ability to accurately locate salient features indicative of 
potential defects in bridge images. After feature extraction, the output of the encoder acts as a rich coded 
input for the decoding stage. The decoder expands this input into a sequence of words using gated 
recurrent units (GRU), while the attention mechanism directs the focus to specific regions of the image. 
This process ensures that each word generated in the description text is related to the corresponding 
visual feature in context. After the fully connected layer, a softmax layer is introduced to finalize the 
textual output. It helps to convert the numerical output of the GRU into a lexicographic probability 
distribution, thus efficiently selecting the most probable words at each step and finally forming a 
coherent descriptive text. 

3.3 Attention mechanism 

The soft-attention mechanism is a key component of this framework, linking the high-level visual 
features extracted by the ResNet-101 encoder to the word generation process of the GRU-based decoder. 
As each word is generated, the attention mechanism computes a set of weights corresponding to the 
different pixels in the feature map, ensuring that the sum of these weights is 1, resulting in a normalized 
attention distribution. This probabilistic approach keeps the sum of attention consistent across the image 
for each decoding time step. Moreover, ultimately ensures that each word generated in the description 
text is associated with the corresponding visual feature in the context. 

3.4 Loss function 

The loss function is one of the crucial factors in determining the effectiveness of model learning. We 
use a dual loss function strategy to update the model weights. Cross entropy loss is used to minimize 
the difference between the actual word labels and the probability distribution predicted by the model. 
More accurate descriptions are generated by encouraging the model to increase the probability of 
predicting the correct word. Moreover, using bi-stochastic attentional regularisation helps solve the 
potential problem of focusing on local regions and ignoring global information in encoder-decoder 
models. By penalizing the allocation of attention to images that are not fully covered, the model is 
encouraged to spread its attention and generate accurate and comprehensive descriptions. 
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4. EXPERIMENT VALIDATION 

4.1. Dataset preparation  

The training of the model requires the preparation of the appropriate dataset. Considering that there 
are currently no publicly available image-text description datasets directly usable in bridge inspection. 
Therefore, we constructed the dataset based on regular bridge inspection reports provided by Centregreat 
Rail (CGR), an industry company in the ongoing DigiBridge project. Specifically, this dataset will 
include images of the daily inspections and corresponding descriptions. 

We performed preprocessing work on the text part to better use the dataset for training. The cleaning 
method of removing stopwords is mainly used. The constructed dataset has a sample size of 500 pairs 
of images and texts. Then, 80%, 10%, and 10% are selected as the training, validation, and test sets. 

4.2. Model evaluation metrics 

In this study, a set of evaluation metrics that are widely used in the field of natural language generation 
were used. They are BLEU [17], METEOR [18], ROUGE-L [19], and CIDEr [20]. These metrics focus 
on different aspects of text generation. Specifically, BLEU and METEOR are mainly used to evaluate 
machine translation tasks, ROUGE-L is widely used for text summarisation tasks, and CIDEr is mainly 
used for image captioning tasks. For these metrics, higher values indicate higher quality of generated 
descriptions. The scores for BLEU-1 to BLEU-4, METEOR, and ROUGE-L range from 0 to 1, while 
the scores for CIDEr range from 0 to 10. 

4.3 Implementation details 

All experiments were executed in Python 3.8 and Pytorch 2.0.1 environments with an Intel(R) Core 
(TM) i7-10700KF CPU@ 3.80 GHz processor and 48 GB of RAM. It also has an NVIDIA GeForce 
RTX 3060 Ti to ensure high computational efficiency and robustness. 

The neural network was configured with a maximum of 50 epochs for training. The size of the 
recognized image is 384*384, the batch size of the input data is set to 8, and a loss rate of dropout=0.5 
is used to cope with overfitting. The word vectors are embedded in 512 dimensions, and both the 
attention mechanism and decoder are assigned 512 dimensions to capture the complexity of the visual-
to-text translation process. 

Consistent with the two-tier architecture, separate learning rates are used for the encoder and decoder. 
The encoder is fine-tuned with a learning rate of 1e-4, while the learning rate of the decoder is set to a 
slightly higher 4e-4 to promote faster convergence of the model parameters. This differential learning 
rate strategy helps balance the learning rate between the two network components. 

Furthermore, improvements in the BLEU-4 score employed an early stopping mechanism with a 
threshold of 5 epochs. This approach ensures that the training halts if the BLEU-4 score does not 
improve for five consecutive epochs. BLEU-4, a crucial indicator of phrase-level textual accuracy, 
reflects the model's proficiency in generating coherent and relevant descriptions. This early-stopping 
strategy prevents overfitting and optimizes computational resources by terminating training when 
minimal improvements occur. 

4.4. Experimental result of captioning generation 

a. Quantitative results 
Experiments were conducted in two separate scenarios with and without the attention mechanism to 

assess the model's ability to generate descriptions automatically. The evaluation metrics generated using 
the performance metrics presented in Section 4.2 are shown in Table 1. The table includes seven 
assessment metrics: BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-L, and CIDEr. 
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Table 1. The evaluation metrics of descriptions generation 

No. BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr 
Attention 0.703 0.638 0.602 0.575 0.399 0.722 5.583 

Without 0.655 0.589 0.554 0.535 0.371 0.675 5.202 
 
Firstly, some common trends are reflected in both cases. For example, when an attention mechanism 

is present, the BLEU scores decrease from 0.703 (BLEU-1) at the word level to 0.638 and 0.602 (BLEU-
2 & BLEU-3) at the phrase level and finally to 0.575 (BLEU-4) for the overall structure. That is, the 
BLEU scores all decrease as the n-gram length increases. This decrease reflects the increasing difficulty 
of the model in capturing the subtle structure of longer phrases and sentences as the sequences lengthen. 
In addition, the higher scores for METEOR & ROUGE-L, 0.399 & 0.722, reflect the consistency of the 
model-generated descriptions with the reference descriptions regarding semantic matching and 
similarity in sentence structure. In contrast, the high CIDEr score, 5.583, indicates the model's ability to 
generate highly relevant descriptions of a given task. 

In contrast, models without an attention mechanism scored lower on all metrics than those with an 
attention mechanism. This suggests that the attention mechanism aids the model in capturing finer 
details at the word and phrase level and maintaining the coherence and relevance of the generated 
descriptions over longer text spans. Thus, the quantitative results highlight the model's effectiveness in 
automatically generating bridge defect descriptions. The importance of attentional mechanisms in image 
captioning models also allowed for a better detailed and contextualised understanding of complex visual 
scenes. 

b. Qualitative result 
To visually demonstrate the method's effectiveness, we provide some examples to evaluate the 

qualitative performance of our image caption generation model, as shown in Fig. 2. Each example 
consists of an image, a ground truth description (GT), and a generated description (Gen). GT is 
authentically derived from field engineers' records and can be used as a reference standard for evaluating 
the Gen. Observation from Fig. 2. This reveals that the model generated almost exactly correct 
descriptions in these examples. It is worth noting that the disappearing stopwords in the Gen are mainly 
due to the cleaning method of stopword removal used in constructing the dataset. Therefore, we can 
assume that the model has been able to generate corresponding descriptions of actual images to a large 
extent and will be adaptable and useful in several common bridge detection scenarios. 

 

   
GT: section loss to bowstring 
arch truss flange angle 

GT: bottom boom lower rsa 
corroded 

GT: corroded drainage spigot 

Gen: section loss bowstring arch 
truss flange angle 

Gen: bottom boom lower rsa 
corroded 

Gen: corroded drainage spigot 

   
GT: holes and pitting in deck 
plate 

GT: holes in web of diaphragm 
plate 

GT: holes in truss web 

Gen: holes pitting deck plate Gen: holes web diaphragm plate Gen: holes truss web 

Figure 2. Examples of generating descriptions (GT: ground truth, Gen: generated) 
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4.5. Model explainability analysis 

Deep learning models often need help in explainability due to their complexity and multi-layer 
structure. In particular, models with multiple hidden layers and many parameters often have a "black 
box" decision-making process that is not intuitively understood. In this case, a heatmap of the attention 
mechanism can visualise which parts of the input data the model pays more attention to when making 
decisions. It will help to understand the model's decision-making rationale by highlighting important 
features. As shown in Fig. 3, (a), (c), and (e) are the original images, respectively. (b), (d) and (f) are 
then the corresponding heatmaps of the attention mechanism. 

 

 
 

(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 3. Attention mechanism heatmaps for original image generated descriptions 

The observation reveals that the "section loss" generated in (b) correctly attends to the location of the 
defect in (a). However, the "holes" and "pitting" generated in (d) did not focus on the accurate location 
in (c). The "section loss" generated in (f) also does not focus on the accurate position in (e). Therefore, 
a research question arises: Are the regional features used by the model accurate during learning? 

To explore this question further, we set up a comparison experiment based on image restoration. After 
manually selecting critical defective regions on the original image, an image processing algorithm using 
texture restoration techniques was used to obtain the restored image. The specific restored image areas 
are shown in red boxes in Fig. 4 (a), (c), (e). Subsequently, the restored image is provided to the model 
again to generate a new predictive description. In this way, we can perform a comparison test. If the 
model generates a different description on the restored image, the model relies more on the critical 
region when generating the description. Conversely, it may indicate that the model relied more on other 
regions in the image or learned features unrelated to the defect. 

 

 
 

(a) (b) 
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(c)  (d) 

 
 

(e) (f) 

Figure 4. Attention mechanism heatmaps for restored image generated descriptions 

As can be seen in (b), (d), and (f) of Fig. 4, the restored image generates the same description as the 
original image. This indicates that the model's understanding of the image content may be too superficial 
and needs a deeper recognition of the defect's salient features. The model relies more on learning 
contextual cues of the environment in the image without effectively focusing on identifying critical 
regions. In addition, the misaligned regions on the attention heatmap reveal the model's limitations in 
terms of architecture or attention mechanisms. In summary, the model needs further refinement in terms 
of explainability. Improvements can be continued by expanding the sample size and replacing the 
attention mechanism. 

5. CONCLUSION 

This study successfully implemented a deep learning-based image description method for 
automatically generating bridge defect descriptions. The model employs an advanced encoder-decoder 
architecture and attention mechanism to demonstrate its ability to explain and describe various bridge 
detection images. The main contribution of this research lies in the innovative application of image 
captioning techniques in infrastructure maintenance, particularly in the context of bridge inspections. 
This approach can be directly used to automatically generate defect descriptions in bridge inspection 
reports, enhancing the efficiency and accuracy of bridge inspections while significantly reducing manual 
workload. The evaluation results of the experiments demonstrate the ability of the model to generate 
detailed and relevant defect descriptions, which is mainly confirmed by the BLEU, METEOR, ROUGE-
L, and CIDEr scores. The introduction of the attention mechanism also helps in generating more 
accurate descriptions. In addition, it is worth noting that through the comparative experiments on image 
restoration, we also found that the model has limitations regarding explainability. This is mainly 
manifested in the inability to fully recognize the features of salient regions, which requires further 
exploration. 

In conclusion, this study makes a practical contribution to bridge inspection in the infrastructure field 
and lays the foundation for automating bridge inspection report generation. Future research can explore 
more advanced models of attention mechanisms and introduce a more comprehensive domain-specific 
knowledge base to improve the utility of AI-driven bridge inspection further. 
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