• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.026 seconds

A Study on the Features of the Next Generation Search Services (차세대 검색서비스의 속성에 관한 연구)

  • Lee, Soo-Sang;Lee, Soon-Young
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.4
    • /
    • pp.93-112
    • /
    • 2009
  • Recently in the area of the information environment, there are lively discussions about search 2.0 which is representative of the next generation search services. In this study, we divide information search model into matching and linking models according the developmental stages. Therefore, on the one hand, we analyze the background, main concepts, related attributes and cases of the next generation search services and the other, we identify the representative keywords by the group analysis of various attributes and cases of it. The result shows that the main keywords such as social search, artificial intelligence and semantic search, and relation/network based search are representative of the search 2.0.

An Ensemble Cascading Extremely Randomized Trees Framework for Short-Term Traffic Flow Prediction

  • Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1975-1988
    • /
    • 2019
  • Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.

Opera Clustering: K-means on librettos datasets

  • Jeong, Harim;Yoo, Joo Hun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • With the development of artificial intelligence analysis methods, especially machine learning, various fields are widely expanding their application ranges. However, in the case of classical music, there still remain some difficulties in applying machine learning techniques. Genre classification or music recommendation systems generated by deep learning algorithms are actively used in general music, but not in classical music. In this paper, we attempted to classify opera among classical music. To this end, an experiment was conducted to determine which criteria are most suitable among, composer, period of composition, and emotional atmosphere, which are the basic features of music. To generate emotional labels, we adopted zero-shot classification with four basic emotions, 'happiness', 'sadness', 'anger', and 'fear.' After embedding the opera libretto with the doc2vec processing model, the optimal number of clusters is computed based on the result of the elbow method. Decided four centroids are then adopted in k-means clustering to classify unsupervised libretto datasets. We were able to get optimized clustering based on the result of adjusted rand index scores. With these results, we compared them with notated variables of music. As a result, it was confirmed that the four clusterings calculated by machine after training were most similar to the grouping result by period. Additionally, we were able to verify that the emotional similarity between composer and period did not appear significantly. At the end of the study, by knowing the period is the right criteria, we hope that it makes easier for music listeners to find music that suits their tastes.

Performance analysis of deep learning-based automatic classification of upper endoscopic images according to data construction (딥러닝 기반 상부위장관 내시경 이미지 자동분류의 데이터 구성별 성능 분석 연구)

  • Seo, Jeong Min;Lim, Sang Heon;Kim, Yung Jae;Chung, Jun Won;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.451-460
    • /
    • 2022
  • Recently, several deep learning studies have been reported to automatically identify the location of diagnostic devices using endoscopic data. In previous studies, there was no design to determine whether the configuration of the dataset resulted in differences in the accuracy in which artificial intelligence models perform image classification. Studies that are based on large amounts of data are likely to have different results depending on the composition of the dataset or its proportion. In this study, we intended to determine the existence and extent of accuracy according to the composition of the dataset by compiling it into three main types using larynx, esophagus, gastroscopy, and laryngeal endoscopy images.

TsCNNs-Based Inappropriate Image and Video Detection System for a Social Network

  • Kim, Youngsoo;Kim, Taehong;Yoo, Seong-eun
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.677-687
    • /
    • 2022
  • We propose a detection algorithm based on tree-structured convolutional neural networks (TsCNNs) that finds pornography, propaganda, or other inappropriate content on a social media network. The algorithm sequentially applies the typical convolutional neural network (CNN) algorithm in a tree-like structure to minimize classification errors in similar classes, and thus improves accuracy. We implemented the detection system and conducted experiments on a data set comprised of 6 ordinary classes and 11 inappropriate classes collected from the Korean military social network. Each model of the proposed algorithm was trained, and the performance was then evaluated according to the images and videos identified. Experimental results with 20,005 new images showed that the overall accuracy in image identification achieved a high-performance level of 99.51%, and the effectiveness of the algorithm reduced identification errors by the typical CNN algorithm by 64.87 %. By reducing false alarms in video identification from the domain, the TsCNNs achieved optimal performance of 98.11% when using 10 minutes frame-sampling intervals. This indicates that classification through proper sampling contributes to the reduction of computational burden and false alarms.

A Qualitative Research on Exploring Consideration Factors for Educational Use of ChatGPT (ChatGPT의 교육적 활용 고려 요소 탐색을 위한 질적 연구)

  • Hyeongjong Han
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.659-666
    • /
    • 2023
  • Among the tools based on generative artificial intelligence, the possibility of using ChatGPT is being explored. However, studies that have confirmed what factors should be considered when using it educationally based on learners' actual perceptions are insufficient. Through qualitative research method, this study was to derive consideration factors when using ChatGPT in the education. The results showed that there were five key factors as follows: critical thinking on generated information, recognizing it as a tool to support learning and avoiding dependent use, conducting prior training on ethical usage, generating clear and appropriate questions, and reviewing and synthesizing answers. It is necessary to develop an instructional design model that comprehensively composes the above elements.

A Study on Optimization Model for IoT and IoB based Optimal Medical Care (IoT(Internet of Things)와 IoB(Internet of Body) 기반 적정 의료를 위한 의료 최적화 모델 연구)

  • Park, Sunho;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.551-554
    • /
    • 2017
  • The largest industry in the world is the medical industry, and due to aging and growing demand for well-being, it is necessary to review the competition strategy of the healthcare industry. We will secure competitiveness among medical institutions through the rapid dissemination of ICT convergence, study the intelligence level of digital health care by increasing the capacity of intelligent medical care by combining big data of medical data and artificial intelligence, And to find a countermeasure for constructing a medical optimization model.

  • PDF

Research on Artificial Intelligence Based De-identification Technique of Personal Information Area at Video Data (영상데이터의 개인정보 영역에 대한 인공지능 기반 비식별화 기법 연구)

  • In-Jun Song;Cha-Jong Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.19-25
    • /
    • 2024
  • This paper proposes an artificial intelligence-based personal information area object detection optimization method in an embedded system to de-identify personal information in video data. As an object detection optimization method, first, in order to increase the detection rate for personal information areas when detecting objects, a gyro sensor is used to collect the shooting angle of the image data when acquiring the image, and the image data is converted into a horizontal image through the collected shooting angle. Based on this, each learning model was created according to changes in the size of the image resolution of the learning data and changes in the learning method of the learning engine, and the effectiveness of the optimal learning model was selected and evaluated through an experimental method. As a de-identification method, a shuffling-based masking method was used, and double-key-based encryption of the masking information was used to prevent restoration by others. In order to reuse the original image, the original image could be restored through a security key. Through this, we were able to secure security for high personal information areas and improve usability through original image restoration. The research results of this paper are expected to contribute to industrial use of data without personal information leakage and to reducing the cost of personal information protection in industrial fields using video through de-identification of personal information areas included in video data.

A Stock Price Prediction Based on Recurrent Convolution Neural Network with Weighted Loss Function (가중치 손실 함수를 가지는 순환 컨볼루션 신경망 기반 주가 예측)

  • Kim, HyunJin;Jung, Yeon Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.3
    • /
    • pp.123-128
    • /
    • 2019
  • This paper proposes the stock price prediction based on the artificial intelligence, where the model with recurrent convolution neural network (RCNN) layers is adopted. In the motivation of this prediction, long short-term memory model (LSTM)-based neural network can make the output of the time series prediction. On the other hand, the convolution neural network provides the data filtering, averaging, and augmentation. By combining the advantages mentioned above, the proposed technique predicts the estimated stock price of next day. In addition, in order to emphasize the recent time series, a custom weighted loss function is adopted. Moreover, stock data related to the stock price index are adopted to consider the market trends. In the experiments, the proposed stock price prediction reduces the test error by 3.19%, which is over other techniques by about 19%.

An Evaluation of Determinants to Viewer Acceptance of Artificial Intelligence-based News Anchor (인공지능(AI) 기술 기반의 뉴스 앵커에 대한 수용 의도의 선행요인 연구)

  • Shin, Ha-Yan;Kweon, Sang-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.205-219
    • /
    • 2021
  • The present study identified determinants to user acceptance of artificial intelligence(AI)-based news anchor. Our conceptual model included three constructs of ability, benevolence, and integrity to determine whether these three constructs are predictive of trust perceived from AI news anchor. This work further examined the influences of social presence, anthropomorphism, perceived usefulness, understanding as well as trust as immediate determinants to user acceptance. The conceptual model was validated on survey data collected from 513 respondents. A series of scale refinement process was conducted by the examination of data normality, common method bias, structure of latent variables as well as internal consistency. In addition, a confirmatory factor analysis was performed to assess the extent to which the sample data collected from survey study measures the constructs adequately. The results from the analysis of structural equation model indicated that, (1) two constructs of ability and integrity were found to be significantly predictive of perceived trust, and (2) anthropomorphism, perceived usefulness, and trust emerged as significant and positive predictors of user acceptance of AI-based news anchor.