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Abstract 
 

Short-term traffic flow prediction plays an important role in intelligent transportation systems 
(ITS) in areas such as transportation management, traffic control and guidance. For short-term 
traffic flow regression predictions, the main challenge stems from the non-stationary property 
of traffic flow data. In this paper, we design an ensemble cascading prediction framework 
based on extremely randomized trees (extra-trees) using a boosting technique called EET to 
predict the short-term traffic flow under non-stationary environments. Extra-trees is a 
tree-based ensemble method. It essentially consists of strongly randomizing both the attribute 
and cut-point choices while splitting a tree node. This mechanism reduces the variance of the 
model and is, therefore, more suitable for traffic flow regression prediction in non-stationary 
environments. Moreover, the extra-trees algorithm uses boosting ensemble technique 
averaging to improve the predictive accuracy and control overfitting. To the best of our 
knowledge, this is the first time that extra-trees have been used as fundamental building blocks 
in boosting committee machines. The proposed approach involves predicting 5 min in advance 
using real-time traffic flow data in the context of inherently considering temporal and spatial 
correlations. Experiments demonstrate that the proposed method achieves higher accuracy and 
lower variance and computational complexity when compared to the existing methods. 
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1. Introduction 

Over the past decades, traffic congestion has become increasingly serious. Dynamic traffic 
management is a common method for reducing congestion in fast developing intelligent 
transportation systems (ITSs) and advanced traffic management systems (ATMSs) 
[1][2][3][4][5][6]. Accurate and timely traffic flow information is crucial for traffic regulation 
and vehicular navigation. The short-term traffic flow prediction problem is to forecast the 
traffic flow at a road surveillance point for the near future with the current traffic flow and 
several sensor readings such as speed and occupancy. Most of the proposed traffic flow 
prediction methods[7][8][9]  require considerable training time as well as high computational 
complexity under the assumption that the traffic flow data fluctuates in an acceptable range. 
Therefore, how to perform short-term traffic flow prediction under non-stationary conditions, 
such as the presence of car collisions, road congestion, device breakdown and complicated 
urban environments [10][11], is a challenging task. In addition, achieving high prediction 
accuracy as well as less time consumption and computational complexity during prediction is 
a critical issue. 

1.1 Related Work 
Several researchers have used a wide variety of approaches for predicting short-term traffic 
flow. Existing traffic flow prediction approaches can be divided into parametric approaches 
and nonparametric approaches. Parametric approaches are based on time-series methods, such 
as the seasonal autoregressive integrated moving average (SARIMA) model that is extended 
from the autoregressive moving average (ARMA) model and the autoregressive integrated 
moving average (ARIMA) model. They are founded on stochastic system theory and use the 
patterns of the temporal variation of traffic flow for prediction. 

Tahmasbi et al.[12] adopted stochastic differential equations (SDEs) for traffic flow 
prediction and used Hull-White model to estimate the parameters theoretically. Y. Hou et al. 
[13],  presented four traffic flow forecasting models for urban work zones using random forest, 
regression tree, multilayer feed-forward neural network, and nonparametric regression. The 
results showed that the random forest model yielded the most accurate traffic flow forecasts. 
Recently, some researchers realized that traffic data are increasing exponentially [14] and 
proposed a deep learning approach using stacked autoencoders (SAEs) to learn generic traffic 
flow features considered that existing traffic flow prediction are shallow in architecture and 
training in a greedy layerwise fashion. Meanwhile, W. Huang et al. [15] proposed a deep 
architecture that consists of a deep belief network (DBN) at the bottom and a multitask 
regression layer at the top. Both deep learning models have a superior performance on the 
basis of experiments. However, they often require a high computational complexity, and 
system deployment is complicated. 

Because traffic data have characteristics of real-time variability and high frequency, 
several online and incremental learning frameworks have been proposed. For example, 
incremental methods based on k-nearest neighbors (KNNs), artificial neural networks (ANNs), 
support vector regressions (SVRs), and deep learning have been constructed. M. Castro-Neto 
et al. [16] proposed the online-SVR (OL-SVR) approach to predict short-term freeway traffic 
flow under typical and atypical conditions from the standpoint of applicability and showed 
that OL-SVR is suitable and useful in real-world operations and has better performance than 
other models. K. Y. Chan et al. [17] proposed a neural network (NN) model and used hybrid 
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exponential smoothing and Levenberg-Marquardt algorithm to improve the generalization 
capabilities. K. Kumar et al. [18] applied ANNs for short-term traffic flow prediction and 
obtained consistent performance in time intervals from 5 min to 15 min . 

In summery, in the existing methods, either the computation cost is high or they have 
difficulty in handling the real-time variability and high-frequency problem of traffic flow 
prediction. 

1.2 Contributions 
In this paper, we propose an ensemble cascading prediction framework based on extremely 
randomized trees (extra-trees) and a boosting technique with high prediction accuracy and low 
computational complexity. The extra-tree method is a tree-based ensemble method. Its 
randomness extends the method in which splits are computed. As in random forests, a random 
subset of candidate features is used, but instead of looking for the most discriminative 
thresholds, thresholds are drawn at random for each candidate feature, and the best of these 
randomly generated thresholds is selected as the splitting rule. This usually reduces the 
variance of the model slightly more, which is more suitable for the prediction of short-term 
traffic flow prediction under non-stationary conditions. Moreover, the extra-trees algorithm 
uses boosting ensemble technique averaging to improve the predictive accuracy and to control 
overfitting. 

The contributions of this paper are summarized as follows. 
1) Ensemble learning of the fast randomized tree methods for traffic flow prediction 

incorporates the advantages of low bias-variance and computational complexity. 
Compared with other tree-based ensemble algorithms, our prediction framework is 
more accurate and efficient. 

2) Our prediction framework is well fitted in both stationary and non-stationary 
conditions with breakdown data caused by detectors. 

3) We employ an ensemble mechanism to improve our traffic flow prediction 
performance. We use extra-trees as fundamental building blocks in boosting 
committee machines, regressors are combined using the weighted median, and 
predictors that have more accurate results are weighted more heavily. Therefore, our 
prediction framework obtains higher accuracy. 

The remainder of this paper is organized as follows. In Section 2, we introduce the 
fundamental building block of our framework, the extra-trees algorithm. In Section 3, we 
introduce our proposed ensemble cascading framework using the boosting technique. In 
Section 4, the data description, experimental design and results are described. The conclusions 
and future work are presented in Section 5. 

2. Extremely Randomized Trees 
In our traffic flow prediction framework, we mainly use extremely randomized trees 
(extra-trees) as the fundamental building blocks due to their higher accuracy, lower 
computational complexity and variance compared with other conventional methods such as 
decision trees (DT), AdaBoost regressions (ABR), and support vector regressions (SVR). 

The Extra-Trees algorithm is an integration method which combines multiple unpruned 
decision or regression trees according to the classical top-down procedure. According to [19], 
extra-trees consists of strongly randomizing both attribute and cut-point choice while splitting 
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a tree node. In the extreme case, it constructs completely randomized trees whose  structures 
are independent of the output values of the learning sample. The extra-trees algorithm avoids 
overfitting and has better accuracy and stability relative to the use of a single decision tree. 
There are two main differences with other tree-based ensemble methods. First, the extra-trees 
algorithm uses the whole learning sample rather than a bootstrap replica to grow the trees to 
minimize bias. Second,it randomly chooses cut-points to split nodes, which reduces variance 
more strongly than the weaker randomization schemes used by other methods [19]. 

The extra-trees algorithm, in essence, is a tree-based averaging algorithm. It is a 
perturb-and-combine technique specifically designed for trees, which means that a diverse set 
of regressors are generated by introducing randomness in the regressor construction. Then, the 
averaging prediction result of each regressor is taken as the prediction result of our ensemble 
algorithm. In extremely randomized trees, the randomness extends the way that splits are 
computed. In our traffic flow prediction case, near-future traffic flow data are timely predicted 
based on historical and current data, such as traffic flow ( if ), speed ( is ) and occupancy ( io ). 
All of these data are numerical attributes.  Some trees are constructed from the traffic flow data 
set { },X Y  of the s-dimensional input while in training. We use historical traffic flow data 

( 1kf − ) and current traffic flow data ( kf ), speed ( ks ) and occupancy ( ko ) as inputs, and their 
corresponding output is 1kf + , which represents the near future traffic flow. The extra-trees 
building procedure is shown in Algorithm 1. 

 
Algorithm 1  Extra-Trees Building Algorithm 

Input: Traffic flow vector { } [ ]1, , , ,k k k kX Y f s o f−= . 

Output: Decision tree t . 

1. If minX n< ,or  all candidate attributes are constant, or the output variable is constant 
then 

2. Return a leaf labeled by average output. 
3. end if 
4. Randomly select K  attributes, K n=  in regression. 

5. Generate K  splits { }1, , Ks s  according to the maximal and minimal value of K  
attributes. 

6. Select a split bs  with the best ( ),R bScore s S  

7. Split { },X Y into { },l lX Y and { },r rX Y  according to s λ . 

8. Build lt =build_an_ExtraTree( lX , lY ) and rt = build_an_ExtraTree( rX , rY ). 

9. Create a node with the split bs , attach lt  and rt , then return a tree t . 

 
According to [11], there are three parameters in extra-trees algorithm. They are the number 

of trees of the ensemble M , the minimum sample size for splitting a node minn , and the 
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number of attributes randomly selected at each node K . In general, M is set to be 100,  minn is 
set to be 5 in regression, and K  is set to be n , where n  is the number of attributes. 

We use the relative variance reduction, and then the score measure for a sample S  and a 
split s  is defined as 

                       ( )
( ) ( ) ( )

( )

var var var
,

var

l r
l r

R

Y Y
Y Y Y

X X
Score s S

Y

− −
=                                     (1) 

where { },S X Y= , X  is the length of the vector X , and ( )var Y  is the variance of the 
output available at the current node. We use the highest score to make an annotation for the 
current node. { },l lX Y and { },r rX Y  are two subsets from traffic data { },X Y , and we use 

them as input data to respectively construct the left lt  and the right rt   subtrees . 

3. The Proposed Ensemble Cascading Framework 
In this paper, we propose an ensemble cascading framework for traffic flow prediction. The 
fundamental building blocks are extra-trees, and the techniques we employ to improve our 
prediction performance are exponentially weighted moving average (EWMA) and AdaBoost. 

3.1 Exponentially weighted moving average 
Considering the time-varying characteristic of traffic flow, we first use EWMA algorithm to 
preprocess the traffic data to improve our prediction accuracy. It is a moving average method 
that applies weighting factors that decrease exponentially. The most recent data have the most 
important influence on the prediction procedure, and the older data also give some weights. 
Thus, we consider the EWMA algorithm to do the preliminary predictions, which helps us to 
obtain better performance. Normally, there are two parameters in the EWMA algorithm: the 
specified 'span' parameter s  ,and the decay parameter,α . The relationship of these two 
parameters are formulated as 

( ) ( )2 / 1 1/ 1s cα = + = +                                                        (2) 

where c  is the center of mass. Given a span, the associated center of mass is ( )1 / 2c s= − . 

3.2 Ensemble by Adaboost 
AdaBoost is one of the boosting techniques that can reduce prediction errors. We use 
extra-trees as fundamental building blocks in AdaBoost committee machines, and the 
individual regressor is a weak regressor [20]. The AdaBoost algorithm trains each weak 
regressor sequentially. In our work, each extra-tree is trained on different subsets of the 
original traffic flow training set and gives different predictions. The predicted values that 
differ from the observed values are defined to be the most in error, and then the sampling 
probability is adjusted so that these values are more likely to be selected as members of the 
training set for the second extra-trees. Thus, the more difficult it is to predict, the more likely 
that it will appear in the training set. This makes our prediction more accurate. During 
prediction, the input vector is processed by all the extra trees. The outputs of the extra-trees are 
aggregated, and the average yields the final prediction result. 
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4. Experiments 

4.1 Dataset description 
The data we used for traffic flow prediction were collected from Caltrans Performance 
Measurement System (PeMS) database. PeMS is the most widely used dataset in traffic flow 
prediction. The traffic data, including traffic flow, speed, and occupancy, are collected every 
30 s from over 15000 individual detectors, which are deployed statewide in freeway systems 
across California [21]. The collected data were aggregated as counts of cars into a 5-min 
period for each detector station. In our prediction case, we randomly chose five detector 
station, as shown in Table 1. We used the data collected from 2015-11-23 to 2015-11-30. 
Since we aim to predict the traffic for the next 5 min, the time for one day is divided into 288 
intervals. The data of the first seven days were selected as the training set, including 2016 
intervals, and the remaining one-day data were selected as the testing set.  

 
Table 1. Detail Information of the Selected Stations 

Freeway ID LAT   LON LEN ABS PM 
I800-S  400312 37.6774 -122.1189 0.32 0.32 

SR120-E  1004510 37.7831 -121.2338 1.93 3.83 
US101-N  769346 34.1567 -118.4070 0.54 14.88 
1210-W 770187 34.2597 -118.3297 1.54 11.1 

I5-N  1122528 32.8976 -117.2253 0.51 30.1 
 

4.2 Performance metrics 
Typically,we use error measures to evaluate the performance of machine learning methods. To 
evaluate the effectiveness of our proposed model, we use three performance indexes: root 
mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error. 
They are formulated as 

'

1

1MAPE 100
n

i i

i i

f f
n f=

−
= ×∑                                                   (3) 

( )2'

1

1RMSE=
n

i i
i

f f
n =

−∑                                                       (4) 

'

1

1MAE=
n

i i
i

f f
n =

−∑                                                             (5) 

where if  is the observed traffic flow, '
if is the predicted traffic flow, and n  is the total 

number of observations. 

4.3 Comparison results 
In this subsection, we mainly discuss our experimental design and results. We first give an 
illustration of the real and predicted  traffic flow for one day on I-5 North, as shown in Fig. 1. 
We can see that there are two rush hours in one day of traffic flow, from 5:00 AM to 10:00 AM 
and 5:00 PM to 10:00 PM. The purpose of the traffic flow prediction is to relieve traffic 
pressure during peak hours. Thus, for each of the five randomly selected freeways, we 
consider the rush hour from 5:00 AM to 10:00 AM as a typical scenario. 
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Fig. 1. The real and predicted traffic flow in one day on I-5North 

 
To evaluate the performance of the proposed method, we compared it with the 

performance of other integrated learning frameworks, deep learning algorithms, and classical 
machine learning algorithms. Specifically, we compared the performance of the proposed EET 
model with that of the DT, ABR, and SVR methods and the LSTM [22-24]. 

The DT is constructed by a sequence of binary splits of the training set into terminal 
nodes. We set the minn  to 5; if the node size mintN n< , we declare the node terminal node. 
However, the DT has the disadvantage of high variance. The ABR is an ensemble method of 
DT, and we set the number of trees, M , to 100. This ensemble method reduces the variance of 
DT but is still not a satisfactory approach. For SVR, we employ a radial basis function as the 
kernel. Although SVR has been extensively used in the field of ITS, it has drawbacks as well. 
In our proposed EET model, we set M  to 100, minn to 5, and K  to n . Fig. 2 to Fig. 6. show 
the real and predicted traffic flow comparison of DT, ABR, SVR, LSTM and EET during the 
rush hour of 5:00 AM to 10:00 AM on US101-N. From the line chart, we can see that the real 
traffic flow value has the lowest point at time index 20. There may be a traffic jam at this point. 
It is obvious that only the proposed EET and LSTM have predicted this sudden drop. Other 
methods, including DT, ABR and SVR, are affected by this incident, so they deviate from the 
actual flow. Although the deep learning algorithm has strong feature extraction, the key to 
traffic flow prediction is to address the non-stationary property of traffic flow data. LSTM 
offsets many real values at adjacent moments. Only the proposed EET method is capable of 
eliminating this influence. The results illustrate that the prediction result using EET is 
relatively close to the real traffic flow, even at the non-stationary times. 
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Fig. 2. The real and predicted traffic flow during the rush hour from 5:00 AM to 10:00 AM using DT on 

US101-N 

       
Fig. 3. The real and predicted traffic flow during the rush hour from 5:00 AM to 10:00 AM using 

AdaBoost on US101-N 
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Fig. 4. The real and predicted traffic flow during rush hour from 5:00 AM to 10:00 AM using SVR on 

US101-N 

 
Fig. 5. The real and predicted traffic flow during the rush hour of 5:00 AM to 10:00 AM using LSTM on 

US101-N 
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Fig. 6. The real and predicted traffic flow during the rush hour of 5:00 AM to 10:00 AM using EET on 

US101-N 
 

Table 2 to Table 4 show the MAPE, RMSE value and the MAE value calculated by 
different prediction methods at four detectors after running 5 times. From the previous 
introduction of the evaluation metrics, we know that MAPE is the representative of the relative 
error of the predicted values and that RMSE and MAE represent the absolute error. Since the 
test data set contained a midnight time period, the number of vehicles at this time was almost 
zero. Therefore, the overall relative MAPE becomes large, especially at points SR120-E. 
Therefore, it can be concluded from the longitudinal comparison of the tables that our 
experimental results are logical and representative. 

By comparing MAPEs horizontally, we find that our EET predictions are better than the 
other methods except for individual rows. Specifically, at point US101-N, the effect of 
improvement is obvious. This shows that EET is more suitable for the prediction of 
non-stationary sequences. In Table 3 and Table 4 EET was also significantly better than the 
other algorithms, and the actual error decreased by approximately 3% to 5% compared with 
the other optimal algorithms. By analyzing the predicted results from different perspectives, it 
can be concluded that the proposed EET method is effective for short-term traffic flow 
prediction. The advantages of our EET exist and are obvious, both in terms of accuracy and 
stability. 

 
Table 2. Performance Comparison of the MAPE for DT, ABR, SVR, and our EET 

Freeway DT ABR   SVR EET 
I800-S 11.6136 7.7881 6.9461 4.4532 

SR120-E 16.6372 33.1950 30.7212 19.8808 
US101-N 7.2163 5.4948 4.2114 3.9856 
1210-W  13.5136 9.2195 5.9235 5.1549 

I5-N  11.0195 9.7389 6.2946 5.2077 
Average 12.0000 13.0873 10.8194 7.7220 
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Table 3. Performance Comparison of the RMSE for DT, ABR, SVR, and our EET 

Freeway DT ABR   SVR EET 
I800-S 101.9109 49.6517 43.6884 35.1792 

SR120-E 12.9196 23.0978 14.9811 8.7994 
US101-N 50.4465 37.8556 31.0053 30.3252 
1210-W 52.1821 33.4888 19.9989 19.1765 

I5-N 44.4462 36.7954 25.3114 25.8024 
Average 52.3811 36.1779 26.9970 23.8565 

 
Table 4. Performance Comparison of the MAE for DT, ABR, SVR, and our EET 

Freeway DT ABR   SVR EET 
I800-S 62.8833 41.2063 35.7084 24.0083 

SR120-E 7.9833 21.6247 12.5880 5.2250 
US101-N 41.0167 31.3045 24.5090 22.7383 
1210-W 36.9333 26.1918 15.4284 14.3416 

I5-N 29.7000 27.0907 18.0513 15.2616 
Average 35.7033 29.4836 21.2570 16.3150 

 

5. Conclusion 
In this paper, we propose an ensemble cascading prediction framework based on extra-trees 
using a boosting technique, called EET, to predict short-term traffic flow under non-stationary 
conditions. To the best of our knowledge, this is the first time that an ensemble framework is 
applied using extra-trees as building blocks for traffic flow prediction. We employ the EWMA 
algorithm to improve the prediction accuracy, which plays a significant role in our prediction 
procedure. The results show that the performance of our proposed EET is superior to 
conventional DT, ABR, SVR and LSTM approaches under non-stationary conditions both in 
accuracy and stability. 

For future work, we will use more traffic flow data to learn more features of the traffic flow 
and acquire more accurate prediction results. Furthermore, we will focus on some problems in 
real data, such as missing data and data noise, which influences the prediction performance. 
This will help us to build a robust prediction system. 
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