• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.026 seconds

The Effects of Logistics Technology Acceptance in the Fourth Industrial Revolution on Logistics Safety Performance: The Moderated Mediating Effect of Logistics Safety Behavior through Safety Culture

  • Kim, Young-Min
    • Journal of Korea Trade
    • /
    • v.26 no.1
    • /
    • pp.57-80
    • /
    • 2022
  • Purpose - This study aims to examine the relationships between the acceptance of the 4th industrial revolution logistics technology, logistics safety behavior, and logistics safety performance, as well as the moderated mediating effects of logistics safety behavior through safety culture in Korea. Design/methodology - Research models and hypotheses were established based on prior research related to the 4th industrial revolution logistics technology, logistics safety, and logistics performance. The survey was conducted on the employees of logistics companies, and reliability analysis, confirmatory factor analysis, discriminant validity analysis, structural equation model analysis, and mediating effect analysis were performed. In addition, the moderated mediating effect analysis applying SPSS Process Model No. 7 was conducted. Findings - Usefulness and sociality of the acceptance of the 4th industrial revolution logistics technology had a significant effect on logistics safety behavior. Ease of use, sociality, and efficiency had meaningful effect on logistics safety performance. And in the relationships between the acceptance of logistics technology and logistics safety performance, logistics safety behavior had a significant mediating effect. But the moderated mediating effect of safety behavior through safety culture was not significant. Logistics companies can improve logistics safety performance through the utilization of new logistics technologies such as intelligent logistics robots, autonomous driving technology, and artificial intelligence, etc. Originality/value - This is the first study to analyze the relationships between the acceptance of logistics technology in the 4th industrial revolution and logistics safety. In addition, previous studies analyzed mediating effects or moderating effects, but this is the first study to identify the moderated mediating effects of safety behavior through safety culture. In other words, it has originality in terms of research methodology.

Detection of Red Pepper Powders Origin based on Machine Learning (머신러닝 기반 고춧가루 원산지 판별기법)

  • Ryu, Sungmin;Park, Minseo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.355-360
    • /
    • 2022
  • As the increase cost of domestic red pepper and the increase of imported red pepper, damage cases such as false labeling of the origin of red pepper powder are issued. Accordingly we need to determine quickly and accurately for the origin of red pepper powder. The used method for presently determining the origin has the limitation in that it requires a lot of cost and time by experimentally comparing and analyzing the components of red pepper powder. To resolve the issues, this study proposes machine learning algorithm to classifiy domestic and imported red pepper powder. We have built machine learning model with 53 components contained in red pepper powder and validated. Through the proposed model, it was possible to identify which ingredients are importantly used in determining the origin. In the near future, it is expected that the cost of determining the origin can be further reduced by expanding to various foods as well as red pepper powder.

Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP (리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석)

  • Boram Kang;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • The tourism industry is facing a crisis due to the recent COVID-19 pandemic, and it is vital to improving profitability to overcome it. In situations such as COVID-19, it would be more efficient to sell additional products other than guest rooms to customers who have visited to increase the unit price rather than adopting an aggressive sales strategy to increase room occupancy to increase profits. Previous tourism studies have used machine learning techniques for demand forecasting, but there have been few studies on cross-selling forecasting. Also, in a broader sense, a resort is the same accommodation industry as a hotel. However, there is no study specialized in the resort industry, which is operated based on a membership system and has facilities suitable for lodging and cooking. Therefore, in this study, we propose a cross-selling prediction model using various machine learning techniques with an actual resort company's accommodation data. In addition, by applying the explainable artificial intelligence XAI(eXplainable AI) technique, we intend to interpret what factors affect cross-selling and confirm how they affect cross-selling through empirical analysis.

Performance Improvement of Facial Gesture-based User Interface Using MediaPipe Face Mesh (MediaPipe Face Mesh를 이용한 얼굴 제스처 기반의 사용자 인터페이스의 성능 개선)

  • Jinwang Mok;Noyoon Kwak
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.125-134
    • /
    • 2023
  • The purpose of this paper is to propose a method to improve the performance of the previous research is characterized by recognizing facial gestures from the 3D coordinates of seven landmarks selected from the MediaPipe Face Mesh model, generating corresponding user events, and executing corresponding commands. The proposed method applied adaptive moving average processing to the cursor positions in the process to stabilize the cursor by alleviating microtremor, and improved performance by blocking temporary opening/closing discrepancies between both eyes when opening and closing both eyes simultaneously. As a result of the usability evaluation of the proposed facial gesture interface, it was confirmed that the average recognition rate of facial gestures was increased to 98.7% compared to 95.8% in the previous research.

Efficient Hangul Word Processor (HWP) Malware Detection Using Semi-Supervised Learning with Augmented Data Utility Valuation (효율적인 HWP 악성코드 탐지를 위한 데이터 유용성 검증 및 확보 기반 준지도학습 기법)

  • JinHyuk Son;Gihyuk Ko;Ho-Mook Cho;Young-Kuk Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.71-82
    • /
    • 2024
  • With the advancement of information and communication technology (ICT), the use of electronic document types such as PDF, MS Office, and HWP files has increased. Such trend has led the cyber attackers increasingly try to spread malicious documents through e-mails and messengers. To counter such attacks, AI-based methodologies have been actively employed in order to detect malicious document files. The main challenge in detecting malicious HWP(Hangul Word Processor) files is the lack of quality dataset due to its usage is limited in Korea, compared to PDF and MS-Office files that are highly being utilized worldwide. To address this limitation, data augmentation have been proposed to diversify training data by transforming existing dataset, but as the usefulness of the augmented data is not evaluated, augmented data could end up harming model's performance. In this paper, we propose an effective semi-supervised learning technique in detecting malicious HWP document files, which improves overall AI model performance via quantifying the utility of augmented data and filtering out useless training data.

Identifying Atrial Fibrillation With Sinus Rhythm Electrocardiogram in Embolic Stroke of Undetermined Source: A Validation Study With Insertable Cardiac Monitors

  • Ki-Hyun Jeon;Jong-Hwan Jang;Sora Kang;Hak Seung Lee;Min Sung Lee;Jeong Min Son;Yong-Yeon Jo;Tae Jun Park;Il-Young Oh;Joon-myoung Kwon;Ji Hyun Lee
    • Korean Circulation Journal
    • /
    • v.53 no.11
    • /
    • pp.758-771
    • /
    • 2023
  • Background and Objectives: Paroxysmal atrial fibrillation (AF) is a major potential cause of embolic stroke of undetermined source (ESUS). However, identifying AF remains challenging because it occurs sporadically. Deep learning could be used to identify hidden AF based on the sinus rhythm (SR) electrocardiogram (ECG). We combined known AF risk factors and developed a deep learning algorithm (DLA) for predicting AF to optimize diagnostic performance in ESUS patients. Methods: A DLA was developed to identify AF using SR 12-lead ECG with the database consisting of AF patients and non-AF patients. The accuracy of the DLA was validated in 221 ESUS patients who underwent insertable cardiac monitor (ICM) insertion to identify AF. Results: A total of 44,085 ECGs from 12,666 patient were used for developing the DLA. The internal validation of the DLA revealed 0.862 (95% confidence interval, 0.850-0.873) area under the curve (AUC) in the receiver operating curve analysis. In external validation data from 221 ESUS patients, the diagnostic accuracy of DLA and AUC were 0.811 and 0.827, respectively, and DLA outperformed conventional predictive models, including CHARGE-AF, C2HEST, and HATCH. The combined model, comprising atrial ectopic burden, left atrial diameter and the DLA, showed excellent performance in AF prediction with AUC of 0.906. Conclusions: The DLA accurately identified paroxysmal AF using 12-lead SR ECG in patients with ESUS and outperformed the conventional models. The DLA model along with the traditional AF risk factors could be a useful tool to identify paroxysmal AF in ESUS patients.

Feasibility of a deep learning-based diagnostic platform to evaluate lower urinary tract disorders in men using simple uroflowmetry

  • Seokhwan Bang;Sokhib Tukhtaev;Kwang Jin Ko;Deok Hyun Han;Minki Baek;Hwang Gyun Jeon;Baek Hwan Cho;Kyu-Sung Lee
    • Investigative and Clinical Urology
    • /
    • v.63 no.3
    • /
    • pp.301-308
    • /
    • 2022
  • Purpose To diagnose lower urinary tract symptoms (LUTS) in a noninvasive manner, we created a prediction model for bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using simple uroflowmetry. In this study, we used deep learning to analyze simple uroflowmetry. Materials and Methods We performed a retrospective review of 4,835 male patients aged ≥40 years who underwent a urodynamic study at a single center. We excluded patients with a disease or a history of surgery that could affect LUTS. A total of 1,792 patients were included in the study. We extracted a simple uroflowmetry graph automatically using the ABBYY Flexicapture® image capture program (ABBYY, Moscow, Russia). We applied a convolutional neural network (CNN), a deep learning method to predict DUA and BOO. A 5-fold cross-validation average value of the area under the receiver operating characteristic (AUROC) curve was chosen as an evaluation metric. When it comes to binary classification, this metric provides a richer measure of classification performance. Additionally, we provided the corresponding average precision-recall (PR) curves. Results Among the 1,792 patients, 482 (26.90%) had BOO, and 893 (49.83%) had DUA. The average AUROC scores of DUA and BOO, which were measured using 5-fold cross-validation, were 73.30% (mean average precision [mAP]=0.70) and 72.23% (mAP=0.45), respectively. Conclusions Our study suggests that it is possible to differentiate DUA from non-DUA and BOO from non-BOO using a simple uroflowmetry graph with a fine-tuned VGG16, which is a well-known CNN model.

Generalized On-Device AI Framework for Semantic Segmentation (의미론적 분할을 위한 범용 온디바이스 AI 프레임워크)

  • Jun-Young Hong;Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.903-910
    • /
    • 2024
  • Complex semantic segmentation tasks are primarily performed in server environments equipped with high-performance graphics hardware such as GPUs and TPUs. This cloud-based AI inference method operates by transmitting processed results to the client. However, this approach is dependent on network communication and raises concerns about privacy infringement during the process of transmitting user data to servers. Therefore, this paper proposes a Generalized On-Device Framework for Semantic Segmentation that can operate in mobile environments with high accessibility to people. This framework supports various semantic segmentation models and enables direct inference in mobile environments through model conversion and efficient memory management techniques. It is expected that this research approach will enable effective execution of semantic segmentation algorithms even in resource-constrained situations such as IoT devices, autonomous vehicles, and industrial robots, which are not cloud computing environments. This is expected to contribute to the advancement of real-time image processing, privacy protection, and network-independent AI application fields.

Developing a Model for Autobiography Writing to Promote Mental Health Using an AI Powered Platform

  • Jinsu Chung;Jaewon Lee;Wontaek Oh;Sungmin Kim;Juwon Lee;Sangwoo Kim
    • Journal of Korean Physical Therapy Science
    • /
    • v.31 no.3
    • /
    • pp.1-14
    • /
    • 2024
  • Purpose: This study aims to make it easier for anyone to write an autobiography by utilizing AI technology, allowing individuals to reflect on their lives and reaffirm their identity, ultimately enhancing their self-esteem. Through this research, the necessity of promoting mental health for the elderly is emphasized, and it seeks to provide foundational data contributing to new approaches for improving quality of life. Methods: Basic data for program development were collected in April 2024. Subsequently, the AI beta version was used to identify issues, which were then addressed and improved upon. Results: The results of this study are as follows: First, it was confirmed that structuring the autobiography writing program and providing clear guidelines are essential. Second, the importance of the role of conversation companions and the need for their prior training were emphasized. Third, ensuring the accessibility and ease of participation in the program was shown to enhance participant engagement. Fourth, further empirical research is necessary to verify the effectiveness of the program. Conclusion: This study confirmed that an autobiography writing model utilizing an AI-based platform can contribute to improving older adults' mental health. Older adults who struggle to use digital devices can become more comfortable with them through this program. Additionally, autobiographical writing activities that involve reflecting on their lives and narrating their stories according to various themes provide older adults with the opportunity to achieve a sense of self-integration. Finally, if this program is disseminated in a manner that suits the characteristics of older adults, it can play a significant role in improving their mental health.

A Study of Prediction of Daily Water Supply Usion ANFIS (ANFIS를 이용한 상수도 1일 급수량 예측에 관한 연구)

  • Rhee, Kyoung-Hoon;Moon, Byoung-Seok;Kang, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.821-832
    • /
    • 1998
  • This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. Fuzzy neuron, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an adaptive learning method by which a membership function and fuzzy rules were adapted for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water supplied to the city of Kwangju. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supplied (b) the mean temperature, and (c)the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.35% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

  • PDF