• Title/Summary/Keyword: array sensors

Search Result 478, Processing Time 0.027 seconds

Fabrication and Evaluation of Heat Transfer Property of 50 Watts Rated LED Array Module Using Chip-on-board Type Ceramic-metal Hybrid Substrate (Chip-on-board 형 세라믹-메탈 하이브리드 기판을 적용한 50와트급 LED 어레이 모듈의 제조 및 방열특성 평가)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.149-154
    • /
    • 2018
  • This paper describes the fabrication and heat transfer property of 50 watts rated LED array module where multiple chips are mounted on chip-on-board type ceramic-metal hybrid substrate with high heat dissipation property for high power street and anti-explosive lighting system. The high heat transfer ceramic-metal hybrid substrate was fabricated by conformal coating of thick film glass-ceramic and silver pastes to form insulation and conductor layers, using thick film screen printing method on top of the high thermal conductivity aluminum alloy heat-spreading panel, then co-fired at $515^{\circ}C$. A comparative LED array module with the same configuration using epoxy resin based FR-4 PCB with thermalvia type was also fabricated, then the thermal properties were measured with multichannel temperature sensors and thermal resistance measuring system. As a result, the thermal resistance of the ceramic-metal hybrid substrate in the $4{\times}9$ type LEDs array module exhibited about one third to the value as that of FR-4 substrate, implying that at least triple performance of heat transfer property as that of FR-4 substrate was realized.

Implementation of Wired Sensor Network Interface Systems (유선 센서 네트워크 인터페이스 시스템 구현)

  • Kim, Dong-Hyeok;Keum, Min-Ha;Oh, Se-Moon;Lee, Sang-Hoon;Islam, Mohammad Rakibul;Kim, Jin-Sang;Cho, Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.31-38
    • /
    • 2008
  • This paper describes sensor network system implementation for the IEEE 1451.2 standard which guarantees compatibilities between various wired sensors. The proposed system consists of the Network Capable Application Processor(NCAP) in the IEEE 1451.0, the Transducer Independent Interface(TII) in the IEEE 1451.2, the Transducer Electronic Data Sheet(TEDS) and sensors. The research goal of this study is to minimize and optimize system complexity for IC design. The NCAP is implemented using C language in personal computer environment. TII is used in the parallel port between PC and an FPGA application board. Transducer is implemented using Verilog on the FPGA application board. We verified the proposed system architecture based on the standards.

Fabrication and Characterization of Portable Electronic Nose System for Identification of CO/HC Gases (CO/HC 가스 인식을 위한 소형 전자코 시스템의 제작 및 특성)

  • Hong, Hyung-Ki;Kwon, Chul-Han;Yun, Dong-Hyun;Kim, Seung-Ryeol;Lee, Kyu-Chung;Kim, In-Soo;Sung, Yung-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.476-482
    • /
    • 1997
  • A portable electronic nose system has been fabricated and characterized using an oxide semiconductor gas sensor array and pattern recognition techniques such as principal component analysis and back-propagation artificial neural network. The sensor array consists of six thick-film gas sensors whose sensing layers are Pd-doped $WO_{3}$, Pt-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$ + Pd coated layer, $Al_{2}O_{3}$-doped ZnO and $PdCl_{2}$-doped $SnO_{2}$. The portable electronic nose system consists of an 16bit Intel 80c196kc as CPU, an EPROM for storing system main program, an EEPROM for containing optimized connection weights of artificial neural network, an LCD for displaying gas concentrations. As an application the system has been used to identify 26 carbon monoxide/hydrocarbon (CO/HC) car exhausting gases in the concentration range of CO 0%/HC 0 ppm to CO 7.6%/HC 400 ppm and the identification has been successfully demonstrated.

  • PDF

Induction of the High Order Calibration Equation of Metal Oxide Semiconductor Gas Sensors (산화물 반도체식 가스센서의 입출력 고차 캘리브레이션 방정식 도출)

  • Park, Gyoutae;Kim, Kangmin;Lee, Hyeonggi;Yoon, Myeongsub
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • In this paper, a measuring circuit is designed through analyzing manufacture specification of the sensor based on MOS. And the best input-output polynomial are induced that really gas sensors are used in gas safety management industrial fields. Response characteristics of a MOS gas sensor is analysed by through sensor's output voltages are measured after standard gases with six kinds of concentrations are manufactured and are injected to the sensor. A lookup table is created by relations of sensor's output voltages by injecting gases with other concentrations. Because data of the formed lookup table are equal interval, a polynomial can be induced of method of approximation function. So the 5th polynomial of input-output for a sensor is defined, coefficients are calculated by using least squares method, and the 5th polynomial is completed for representing characteristics of the sensor. If the proposed polynomial is applied to gas leak detectors, an inverse transformation of polynomial and programing of array codes are recreated. In this research, polynomial is implemented with array types that intervals of values of a lookup table are one-fifth sampled and interpolated. The performance of proposed 5th calibration equation is verified that errors are reduced than a linear expression when tests are performed by measurement of concentrations against injection of standard gases.

Detection Method for Bean Cotyledon Locations under Vinyl Mulch Using Multiple Infrared Sensors

  • Lee, Kyou-Seung;Cho, Yong-jin;Lee, Dong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.263-272
    • /
    • 2016
  • Purpose: Pulse crop damage due to wild birds is a serious problem, to the extent that the rate of damage during the period of time between seeding and the stage of cotyledon reaches 45.4% on average. This study investigated a method of fundamentally blocking birds from eating crops by conducting vinyl mulching after seeding and identifying the growing locations for beans to perform punching. Methods: Infrared (IR) sensors that could measure the temperature without contact were used to recognize the locations of soybean cotyledons below vinyl mulch. To expand the measurable range, 10 IR sensors were arranged in a linear array. A sliding mechanical device was used to reconstruct the two-dimensional spatial variance information of targets. Spatial interpolation was applied to the two-dimensional temperature distribution information measured in real time to improve the resolution of the bean coleoptile locations. The temperature distributions above the vinyl mulch for five species of soybeans over a period of six days from the appearance of the cotyledon stage were analyzed. Results: During the experimental period, cases where bean cotyledons did and did not come into contact with the bottom of the vinyl mulch were both observed, and depended on the degree of growth of the bean cotyledons. Although the locations of bean cotyledons could be estimated through temperature distribution analyses in cases where they came into contact with the bottom of the vinyl mulch, this estimation showed somewhat large errors according to the time that had passed after the cotyledon stage. The detection results were similar for similar types of crops. Thus, this method could be applied to crops with similar growth patterns. According to the results of 360 experiments that were conducted (five species of bean ${\times}$ six days ${\times}$ four speed levels ${\times}$ three repetitions), the location detection performance had an accuracy of 36.9%, and the range of location errors was 0-4.9 cm (RMSE = 3.1 cm). During a period of 3-5 days after the cotyledon stage, the location detection performance had an accuracy of 59% (RMSE = 3.9 cm). Conclusions: In the present study, to fundamentally solve the problem of damage to beans from birds in the early stage after seeding, a working method was proposed in which punching is carried out after seeding, thereby breaking away from the existing method in which seeding is carried out after punching. Methods for the accurate detection of soybean growing locations were studied to allow punching to promote the continuous growth of soybeans that had reached the cotyledon stage. Through experiments using multiple IR sensors and a sliding mechanical device, it was found that the locations of the crop could be partially identified 3-5 days after reaching the cotyledon stage regardless of the kind of pulse crop. It can be concluded that additional studies of robust detection methods considering environmental factors and factors for crop growth are necessary.

Development of Radiation Sensor Based on Array SiPM for Measurement of Radioactive Contamination in Effluent (방류수의 방사능 오염 측정을 위한 배열형 SiPM 기반 방사선 검출 센서 제작)

  • Kim, Jeongho;Park, Hyemin;Joo, Koansik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.232-236
    • /
    • 2018
  • A radiation detection sensor was developed and characterized by combining three types of CsI(Tl) scintillators and an array-type SiPM to detect the radioactive contamination of discharged water in real time. The characterization results showed that type 3 exhibited the most desirable characteristics in response linearity (R-square: 0.97889) according to detection sensitivity and incident radiation dose. Furthermore, in terms of spectral characteristics, type 3 exhibited 16.54% at 0.356 MeV (the emission gamma ray energy of $^{133}Ba$), 10.28% at 0.511 MeV (the emission gamma ray energy of $^{22}Na$), 9.68% at 0.356 MeV (the emission gamma ray energy of $^{137}Cs$), and 2.55% and 4.80% at 1.173 MeV and 1.332 MeV (the emission gamma ray energies of $^{60}Co$), respectively. These measurements confirmed the good energy characteristics. The results were used to evaluate the spectral characteristics and energy linearity in a mixed source using type 3 with the best detection characteristics. It was confirmed that the gamma ray peaks of $^{133}Ba$, $^{22}Na$, $^{137}Cs$, and $^{60}Co$ were well resolved. Moreover, it was confirmed that R-square, which is an indicator of energy linearity, was 0.99986. This indicates a good linearity characteristic. Based on this study, further commercialization studies will contribute to measurements in real time and to the management of the contamination caused by radioactive wastewater or radioactive material leakage, which originate from facilities that use radioactive isotopes or care facilities.

Domestic Environment Analysis for Building FTB Aircraft with AESA Radar (AESA Radar 탑재 FTB 항공기 구축을 위한 국내환경 분석)

  • Park, Jehong;Hong, Gyoyoung;Eom, Jeonghwan;Chong, Pilhan;Hong, Seungbeom
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • Recently, active electronically scanned array (AESA) radar, electro-optical and infrared (EO-IR) and infra-red search and track (IRST) sensors are under development in the Korean fighter experimental(KF-X) project, and AESA radar is currently undergoing preliminary research for flight testing. This paper focuses on the flying test bed (FTB) aircraft operation cases of developed countries in accordance with AESA radar development. As a result, we review domestic laws and regulations related to the airworthiness for FTB aircraft to operate in domestic environment and look for ways to operate FTB aircraft. Therefore, we propose how to selecting, airworthiness and operating FTB aircraft suitable for the domestic environment.

GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe (강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구)

  • Park, Jeong Won;Park, Jae Ha;Song, Sung Jin;Kim, Hak Joon;Kwon, Se Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • The typical methods used for inspecting ferromagnetic pipes include the ultrasonic testing (UT) contact method and the following non-contact methods: magnetic flux leakage (MFL), electromagnetic acoustic transducers (EMAT), and remote field eddy current testing (RFECT). Among these methods, the RFECT method has the advantage of being able to establish a system smaller than the diameter of a pipe. However, the method has several disadvantages as well, including different sensitivities and difficult-to-repair coil sensors which comprise its array system. Therefore, a giant magneto-resistance (GMR) sensor was applied to address these issues. The GMR sensor is small, easy to replace, and has uniform sensitivity. In this experiment, the GMR sensor was used to measure remote field and defect signal characteristics (in the axial and radial directions) in a ferromagnetic pipe. These characteristics were measured in an effort to investigate standard defects at changing depths within a pipe. The results show that the experiment successfully demonstrated the applicability of the GMR sensor to RFECT signal detection in ferromagnetic pipe.

Fabrication and Characterization of Thick Film Ammonia Gas Sensor (후막형 암모니아 가스 센서의 제조 및 가스 감응 특성)

  • Yun, Dong-Hyun;Kwon, Chul-Han;Hong, Hyung-Ki;Kim, Seung-Ryeol;Lee, Kyu-Chung
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.445-450
    • /
    • 1997
  • An ammonia gas sensor with high sensitivity using thick-film technology were fabricated and examined. The material for sensing the ammonia gas was the mixture of oxide semiconductor, $FeO_{x}-WO_{3}-SnO_{2}$. The sensor exhibits resistance increase upon exposure to low concentration of ammonia gas. The resistance of the sensor is decreased, on the other hand, for exposure to reducing gases such as ethyl alcohol, methane, propane and carbon monoxide. A novel method for detecting ammonia gas quite selectively utilizing a sensor array consisting of an ammonia gas sensor and a compensation element were proposed and developed. The compensation element is a Pt-doped $WO_{3}-SnO_{2}$ gas sensor which shows opposite direction of resistance change in comparison with that of the ammonia gas sensor upon exposure to ammonia gas. Excellent selectivity has been achieved using the sensor array having two sensing elements.

  • PDF

Fabrication of Nickel Oxide Film Microbolometer Using Amorphous Silicon Sacrificial Layer (비정질 실리콘 희생층을 이용한 니켈산화막 볼로미터 제작)

  • Kim, Ji-Hyun;Bang, Jin-Bae;Lee, Jung-Hee;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.379-384
    • /
    • 2015
  • An infrared image sensor is a core device in a thermal imaging system. The fabrication method of a focal plane array (FPA) is a key technology for a high resolution infrared image sensor. Each pixels in the FPA have $Si_3N_4/SiO_2$ membranes including legs to deposit bolometric materials and electrodes on Si readout circuits (ROIC). Instead of polyimide used to form a sacrificial layer, the feasibility of an amorphous silicon (${\alpha}-Si$) was verified experimentally in a $8{\times}8$ micro-bolometer array with a $50{\mu}m$ pitch. The elimination of the polyimide sacrificial layer hardened by a following plasma assisted deposition process is sometimes far from perfect, and thus requires longer plasma ashing times leading to the deformation of the membrane and leg. Since the amorphous Si could be removed in $XeF_2$ gas at room temperature, however, the fabricated micro-bolomertic structure was not damaged seriously. A radio frequency (RF) sputtered nickel oxide film was grown on a $Si_3N_4/SiO_2$ membrane fabricated using a low stress silicon nitride (LSSiN) technology with a LPCVD system. The deformation of the membrane was effectively reduced by a combining the ${\alpha}-Si$ and LSSiN process for a nickel oxide micro-bolometer.