• Title/Summary/Keyword: area-division

Search Result 7,341, Processing Time 0.036 seconds

An Analysis of Fire Area in Jinju City Based on Fire Mobilization Time (화재 출동시간에 근거한 진주시 소방권역 분석)

  • Koo, Seul;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.127-134
    • /
    • 2012
  • This study analyzed the present status of services by fire-suppression mobilization time of fire station where is located in Jinju city, by using network analysis of GIS targeting fire station(five 119 safety centers, one 119 division) in Jinju city area. As a result, it was indicated to be 15.9% in the ratio with less than 5 minutes of mobilization time, 34.7% in the ratio with less than 8 minutes, 94% in the ratio with less than 20 minutes out of the whole fire service area in Jinju city. Even districts with more than 20 minutes were analyzed to reach 6%. Especially, to solve vulnerability to approach the fire service in uptown districts(Jinseong, Jisu, Sabong, Ilbanseong, the whole area of Ibanseong), the 119 division is installed more to be operated. However, accessibility is still remaining in low level. Also, in case of 119 safety center of Cheonjeon, the national industrial complex and the general industrial complex are being formed on a large scale. However, analyzing the fire service level in the corresponding area, the districts with more than 8 minutes and less than 20 minutes were existing broadly. In consequence of analyzing the fire service area in Jinju city with the fire-suppression mobilization time as the above, the fire service level is failing to escape largely from the status prior to the urban-rural consolidation compared to what the jurisdictional area was largely expanded by which the administrative districts were integrated by the urban-rural consolidation in locally small-and medium-sized city. Thus, there is a need of a measure for improving this.

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.

Areal Distribution Ratio of Rock ffes with Geologic Ages in the Gyeonggi-Seoul-Incheon Areas (경기-서울-인천지역 구성암류의 지질시대별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.208-216
    • /
    • 2007
  • Based on digital geologic and geomorphic maps of 1 : 250,000 scale, distributive ratios of rock types were obtained by ArcGIS 9.0 program in the Gyeonggi, Seoul and Incheon areas of the Gyeonggi province. In the Gyeonggi area, 37 rock types are developed, and their geologic ages can be classified into Precambrian, Age-unknown, Triassic, Jurassic, Cretaceous and Quatemary. Among them, distributive ratios are decreasing in the order of Jurassic Daebo granites, Precambrian banded gneiss of Gyeonggi gneiss complex and Quatemary alluvium, all of which comprise about 83.7% of the rock types in the area. In the Seoul and Incheon areas, 10 and 15 rock types are developed, respectively., with the firmer being classified into Precambrian, Jurassic and Quatemary, and the latter into Precambrian, Jurassic, Cretaceous and Quatemary. In the Seoul area, distributive ratios are decreasing in the order of banded gneiss of Gyeonggi gneiss complex, Daebo granites and alluvium, which consist of 95.5% of the rocks in the area. In the Incheon area, distributive ratios are decreasing in the order of alluvium, Daebo granites, banded gneiss of Gyeonggi gneiss complex, reclaimed land, and schists of Gyeonggi gneiss complex, which occupy about 96.2% of the rocks in the area. The ratio of alluvium in the Incheon area is greater than that of Gyeonggi and Seoul areas, and the ratio of reclaimed land in the Incheon area is greater that of the Seoul, which can be attributed to the recent reclamation of the land for the industrial results such as new town development along the coastline of the Gyeonggi Bay.

Estimation of non-CO2 Greenhouse Gases Emissions from Biomass Burning in the Samcheok Large-Fire Area Using Landsat TM Imagery (Landsat TM 영상자료를 활용한 삼척 대형산불 피해지의 비이산화탄소 온실가스 배출량 추정)

  • Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo;Son, Yeong-Mo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • This study was performed to estimate non-$CO_2$ greenhouse gases (i.e., GHGs) emission from biomass burning at a local scale. Estimation of non-$CO_2$ GHGs emission was conducted using Landsat TM satellite imagery in order to assess the damage degree in burnt area and its effect on non-$CO_2$ GHGs emission. This approach of estimation was based on the protocol of the 2003 IPCC Guidelines. In this study, we used one of the most severe fire cases occurred Samcheock in April, 2004. Landsat TM satellite imageries of pre- and post-fire were used 1) to calculate delta normalized burn ratio (dNBR) for analyzing burnt area and burn severity of the Samcheok large-fire and 2) to quantify non-$CO_2$ GHGs emission from different size of the burnt area and the damage degree. The analysis of dNBR of the Samcheok large-fire indicated that the total burnt area was 16,200ha and the size of the burnt area differed with the burn severity: out of the total burnt area, the burn severities of Low (dNBR < 152), Moderate (dNBR = 153-190), and High (dNBR = 191-255) were 35%, 33%, and 32%, respectively. It was estimated that the burnt areas of coniferous forest, deciduous forest, and mixed forest were about 11,506ha (77%), 453ha (3%), and 2,978ha (20%), respectively. The magnitude of non-$CO_2$ GHGs emissions from the Samcheok large-fire differed significantly, showing 93% of CO (44.100Gg), 6.4% of CH4 (3.053Gg), 0.5% of $NO_x$ (0.238Gg), and 0.1% of $N_2O$ (0.038Gg). Although there were little changes in the total burnt area by the burn severity, there were differences in the emission of non-$CO_2$ GHGs with the degree of the burn severity. The maximum emission of non-$CO_2$ GHGs occurred in moderate burn severity, indicating 47% of the total emission.

Effects of Sowing and Harvesting Times on Feed Value and Functional Component of Triticale (x Triticosecale Wittmack) (트리티케일 파종시기 및 수확시기가 사일리지 사료가치와 기능성 성분에 미치는 영향)

  • Jisuk Kim;Kyungyoon Ra;Yul-Ho Kim;Myoung Ryoul Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.319-325
    • /
    • 2022
  • Triticale forage has the highest yield of all winter forage crops, including rye, and a cold tolerance within an average low temperature of -10℃ in January. Therefore, this study analyzed the effects of sowing and harvesting times on the feed value and functional components of triticale to optimize the use and supply of triticale as livestock fee Room temperature' can vary widely with climate, season, and time of day. In order to clearly state the conditions of the study in a manner that facilitates replication by other researchers, please consider using an approximate temperature range instead. Seeds of the triticale 'Joseong' were sown during the fall of 2021 (October 20th) and spring of 2022 (March 7th). The triticale was harvested at the following growth stages: seedling stage, booting stage, heading stage, 10 days after heading, and 20 days after heading. The moisture content of each harvested triticale was adjusted to approximately 60%, and the triticale was fermented for silage for 40 days at ambient temperature under anaerobic conditions. We measured the pH and organic acid content of each silage to determine the feed value and functional component. The lactic acid content of the triticale silage harvested at the seedling stage sown in both fall and spring (1.61%, 1.63%) was the highest among all the silages. The octacosanol content in the silages of both fall-sown and spring-sown triticale harvested at the seedling stage (0.38, 0.27 mg/ml) was the highest. Overall, the results revealed that harvesting time had a greater impact on the feed value and functional components of triticale silage than sowing time.

Effects of Lignocellulosic Growing Media to The Prevention of Forest Soil Erosion

  • Jo, Jong-Soo;Ha, Si Young;Jung, Ji Young;Kim, Ji-Su;Nam, Jeong Bin;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.419-431
    • /
    • 2017
  • The forest slopes cause substantial local changes in soil properties and an increase in soil erosion after extreme rainstorms. The high soil erosion rates on forest slopes need the effective use of growing media to control the soil runoff. Therefore, we prepared six different lignocellulosic growing media such as peat, perlite, and wood meal as the base materials and carboxymethyl cellulose (CMC), glucomannan, starch, old corrugated containerboard, and computer printout as the additional materials for the prevention of simulated rainfall-induced runoff. The growing media containing old corrugated containerboard efficiently reduced the percentage of soil runoff; however, it could not completely cushion the influence of crust. The best results for plant growth, except in the leaf area, were also obtained with the growing media containing old corrugated containerboard, suggesting an interesting way of paper recycling and an economic benefit for plant or crop growth in forest slope.

Histopathologic and electron microscopic findings of canine malignant melanoma from the lower limb and digit

  • Woo, Gye-Hyeong;Kim, Ha-Young;Park, Jung-Won;Bak, Eun-Jung;Kim, Jin-Young;Choi, Cheong-Up
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.4
    • /
    • pp.533-538
    • /
    • 2007
  • A 16-year-old female mixed dog was submitted for examination at the pathology division of national veterinary research and quarantine service (NVRQS). Grossly, white or grayish spherical, multinodular, firm to friable masses were present in the tibiofibula to the pharenge area of the right limb, and dysphagia, breathing difficulties and tachypnea were shown. Various-sized white or grayish black masses were scattered in lungs and diaphragm and one mass was observed in the trachea and in the jejunum, respectively. Histopathologically, the neoplastic cells were composed of polygonal or spindle shaped cells with various sized round to oval nuclei and abundant cytoplasm. These cells formed lobules or nests separated by fine connective tissue and contained little amount of melanin pigments. Melanin pigments were stained dark gray or black with Fontana-Masson method. Melanosomes were also ultrastructurally demonstrable by electron microscopy. Based on above results, the present case was diagnosed as canine malignant melanoma originating from the lower limb and digit.

Catalytic Combustion of Methane over Perovskite-Type Oxides

  • Hong, Seong-Soo;Sun, Chang-Bong;Lee, Gun-Dae;Ju, Chang-Sik;Lee, Min-Gyu
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2000
  • Methane combustion over perovskite-type oxides prepared using the malic acid method was investigated. To enhance the catalytic activity, the perovskite oxides were modified by the substitution of metal into their A or B site. In addition, the reaction conditions, such as the temperature, space velocity, and partial pressure of the methane were varied to understand their effect on the catalytic performance. With the LaCoO3-type catalyst, the partial substitution of Sr or Ba into site A enhanced the catalytic activity in the methane combustion. With the LaBO3(B=Co, Fe, Mn, Cu)-type catalyst, the catalytic activities were exhibited in the order of Co>Fe Mn>Cu. Futhermore, the partial substitution of Co into site B enhanced the catalytic activity, whereas an excess amount of Co decreased the activity. The surface area and catalytic activity of the perovskite catalysts prepared using the malic acid method showed higher values than those prepared using the solid reaction method. The catalytic activity was enhanced with decreased methane concentration and with a decrease in the space velocity.

  • PDF

An Analysis of the Relationship between Students' Understanding and their Word Problem Solving Strategies of Multiplication and Division of Fractions (분수의 곱셈과 나눗셈에 대한 학생의 이해와 문장제 해결의 관련성 분석)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.50 no.3
    • /
    • pp.337-354
    • /
    • 2011
  • The purpose of the study was to investigate how students understand multiplication and division of fractions and how their understanding influences the solutions of fractional word problems. Thirteen students from 5th to 6th grades were involved in the study. Students' understanding of operations with fractions was categorized into "a part of the parts", "multiplicative comparison", "equal groups", "area of a rectangular", and "computational procedures of fractional multiplication (e.g., multiply the numerators and denominators separately)" for multiplications, and "sharing", "measuring", "multiplicative inverse", and "computational procedures of fractional division (e.g., multiply by the reciprocal)" for divisions. Most students understood multiplications as a situation of multiplicative comparison, and divisions as a situation of measuring. In addition, some students understood operations of fractions as computational procedures without associating these operations with the particular situations (e.g., equal groups, sharing). Most students tended to solve the word problems based on their semantic structure of these operations. Students with the same understanding of multiplication and division of fractions showed some commonalities during solving word problems. Particularly, some students who understood operations on fractions as computational procedures without assigning meanings could not solve word problems with fractions successfully compared to other students.

Fabrication of Porous Nano Particles from Al-Cu Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법으로 제조된 Al-Cu 합금 나노분말을 이용한 다공성 나노 입자 제조)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.234-238
    • /
    • 2008
  • Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).