• Title/Summary/Keyword: applied potential

Search Result 6,437, Processing Time 0.035 seconds

Sliding Mode Control for the Configuration of Satellite Formation Flying using Potential Functions

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Kim, Hae-Dong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.56-63
    • /
    • 2005
  • Some methods have been presented to avoid collisions among satellites for satellite formation flying mission. The potential function method based on Lyapunov's theory is known as a powerful tool for collision avoidance in the robotic system because of its robustness and flexibility. During the last decade, a potential function has also been applied to UAV's and spacecraft operations, which consists of repulsive and attractive potential. In this study, the controller is designed using a potential function via sliding mode technique for the configuration of satellite formation flying. The strategy is based on enforcing the satellite to move along the gradient of a given potential function. The new scalar velocity function is introduced such that all satellites reach the goal points simultaneously. Simulation results show that the controller drives the satellite toward the desired point along the gradient of the potential function and is robust against external disturbances.

THE BOUNDARY ELEMENT METHOD FOR POTENTIAL PROBLEMS WITH SINGULARITIES

  • YUN, BEONG IN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1999
  • A new procedure of the boundary element method(BEM),say, singular BEM for the potential problems with singularities is presented. To obtain the numerical solution of which asymptotic behavior near the singularities is close to that of the analytic solution, we use particular elements on the boundary segments containing singularities. The Motz problem and the crack problem are taken as the typical examples, and numerical results of these cases show the efficiency of the present method.

  • PDF

THE FAR FIELD BEHAVIOR OF A SINGLE LAYER POTENTIAL WITH LINEAR STRENGTH DISTRIBUTION ON A LINE SEGMENT

  • Kim, Do-Wan
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.265-278
    • /
    • 1996
  • This paper is composed of the complete representation of two dimensional single layer potentials with linear strength on a straight line segment and its far field behavior which is closely related to the pose of this line segment. The far field behavior of a single layer potential on a given curve has informations of the shape of the curve.

Characteristic of Nitrobenzene Laser Potential Transformer. (니트로 벤젠을 이용한 레이저 PT의 특성 연구)

  • 김일중;이성규;한민구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.12
    • /
    • pp.903-907
    • /
    • 1987
  • A laser potential transformer(PT) has been developed and characterized to measure the voltages using electro-optic Kerr effect. Laser PT utilizing Kerr cell successfully measures applied voltages up to 3 KV. Experimental results show a good agreement with the theoretical values. Ierr constant of nitrobenzene is also measured and agrees very well with the published results. Applied voltages and modulated laser intensities are also characterized. (Jun 1) WE1

  • PDF

Partition Function of Electrons in Liquid Metals

  • Zhang, Hwe-Ik
    • Nuclear Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.77-82
    • /
    • 1973
  • A method of obtaining the partition function for a system of electrons is developed by defining a new density matrix, in which the Fermi statistics is explicitly incorporated. The corresponding Bloch equation is formulated and a practical method of solving the equation is obtained for weak potential. This theory is applied to structurally disordered ststems which might be reasonable models for liquid metals.

  • PDF

COMPLETELY INTEGRABLE COUPLED POTENTIAL KDV EQUATIONS

  • Wazwaz, Abdul-Majid
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.847-858
    • /
    • 2011
  • We make use of the simplified Hirota's bilinear method with computer symbolic computation to study a variety of coupled potential KdV (pKdV) equations. Each coupled equation is completely integrable and gives multiple soliton solutions and multiple singular soliton solutions. The phase shifts for all coupled pKdV equations are identical whereas the coefficients of the obtained solitons are not identical. The four coupled pKdV equations are resonance free.

COMPUTATION OF ADDED MASS AND DAMPING COEFFICIENTS DUE TO A HEAVING CYLINDER

  • Bhatta Dambaru D.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.127-140
    • /
    • 2007
  • We present the boundary value problem (BVP) for the heave motion due to a vertical circular cylinder in water of finite depth. The BVP is presented in terms of velocity potential function. The velocity potential is obtained by considering two regions, namely, interior region and exterior region. The solutions for these two regions are obtained by the method of separation of variables. The analytical expressions for the hydrodynamic coefficients are derived. Computational results are presented for various depth to radius and draft to radius ratios.

Electrochemical Etch-stop Characteristics of TMAH:IPA:Pyrazine Solutions (TMAH/IPA/Pyrazine용액에 있어서 전기화학적 식각정지 특성)

  • Chung, Gwiy-Sang;Lee, Chae-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.147-151
    • /
    • 2000
  • This paper presents the electrochemical etch-stop characteristics of single-crystal silicon in a tetramethyl ammonium hyciroxide(TMAH):isopropyl alcohol(IPA):pyrazine solution. Addition of pyrazine to a TMAH:IPA etchant increases the etch-rate of (100) silicon, thus the elapsed time for etch-stop was shortened. The current-voltage(I-V) characteristics of n- and p-type silicon in a TMAH:IPA:pyrazine solution were obtained, respectively. Open circuit potential(OCP) and passivation potential(PP) of n- and p-type silicon, respectively, were obtained and applied potential was selected between n- and p-type silicon PP. The electrochemical etch-stop is applied to the fabrication of 801 microdiaphragms having $20\;{\mu}m$ thickness on a 5-inch silicon wafer. The averge thicknesses of 801 microdiaphragms fabricated on the one wafer were $20.03\;{\mu}m$ and standard deviation was ${\pm}0.26{\mu}m$. The silicon surface of the etch-stopped microdiaphragm was extremely flat without noticeable taper or other nonuniformities. The benefits of the electrochemical etch-stop in a TMAH:IPA:pyrazine solution become apparent when reproducibility in the microdiaphragm thickness for mass production is considered. These results indicate that the electrochemical etch-stop in a TMAH:IPA:pyrazine solution provides a powerful and versatile alternative process for fabricating high-yield silicon microdiaphragms.

  • PDF

Fabrication of Silicon Micromenbranes for MEMS Applications (MEMS용 실리콘 마이크로 멤브레인의 제작)

  • Chung, Gwiy-Sang;Park, Chin-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.7-12
    • /
    • 2000
  • This paper presents the electrochemical etch-stop characteristics of single-crystal silicon in a tetramethyl ammonium hydroxide(TMAH):isopropyl alcohol(IPA):pyrazine solution. Addition of pyrazine to a TMAH:IPA etchant increases the etch-rate of (100) silicon, thus the elapsed time for etch-stop was shortened. The current-voltage (I-V) characteristics of n- and p-type silicon in a TMAH:IPA:pyrazine solution were obtained, respectively. Open circuit potential(OCP) and passivation potential(PP) of n- and p-type silicon, respectively, were obtained and applied potential was selected between n- and p-type silicon PP. The electrochemical etch-stop is applied to the fabrication of 801 microdiaphragms having $20{\mu}m$ thickness on a 5-inch silicon wafer. The averge thicknesses of 801 microdiaphragms fabricated on the one wafer were $20.03{\mu}m$ and standard deviation was ${\pm}0.26{\mu}m$. The silicon surface of the etch-stopped microdiaphragm was extremely flat without noticeable taper or other nonuniformities. The benefits of the electrochemical etch-stop in a TMAH:IPA:pyrazine solution become apparent when reproducibility in the microdiaphragm thickness for mass production is considered. These results indicate that the electrochemical etch-stop in a TMAH:IPA:pyrazine solution provides a powerful and versatile alternative process for fabricating high-yield silicon microdiaphragms.

  • PDF

Fabrication of High-yield Si Thin-membranes by Electrochemical Etch-stop (전기화학적 식각정지에 의한 고수율 실리콘 박막 멤브레인 제작)

  • 정귀상;박진상;이원재;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.223-227
    • /
    • 2001
  • In this paper, the authors present the fabrication of high-yield Si thin-membranes by electrochemical etch-stop in tetramethyl ammonium hydroxide (TMAH): isopropyl alcohol (IPA):pyrazine solutions. The current-voltage (I-V) characteristics of n- and p-type Si in TMAH:IPA;pyrazine solutions were analysed, repsectively. Open circuit potential (OCP)and passivation potential (PP) of n- and p-type Si, respectively, were obtained and applied potential was selected between n- and p-type Si PPs. The electrochemical etch-stop method was applied to the fabrication of 801 micro-membranes with 20.0 $\mu\textrm{m}$ thickness on a 5" Si wafer. The average thickness of fabricated 801 micro-membranes on one wafer 20.03$\mu\textrm{m}$ and the standard deviation was ${\pm}$0.26$\mu\textrm{m}$. The Si surface of the etch-stopped micro-membranes was extremely flat with no noticeable taper or nonuniformity. The results indicate that use of the electrochemical etch-stop method for the etching of Si in TMAH:IPA;pyrazine solutions provides a powerful and versatile alternative process for fabricating high-yield Si micro-membranes.

  • PDF