• 제목/요약/키워드: applied element method

Search Result 3,675, Processing Time 0.032 seconds

Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact

  • P.C. Jia;H. Wu;L.L. Ma;Q. Peng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4146-4158
    • /
    • 2022
  • Ultra-high performance concrete (UHPC) has been widely utilized in military and civil protective structures to resist intensive loadings attributed to its excellent properties, e.g., high tensile/compressive strength, high dynamic toughness and impact resistance. At present, aiming to improve the defects of the traditional vertical concrete cask (VCC), i.e., the external storage facility of spent fuel, with normal strength concrete (NSC) shield, e.g., heavy weight and difficult to fabricate/transform, the feasibility of UHPC applied in the shield of VCC is numerically examined considering its high radiation and corrosion resistance. Firstly, the finite element (FE) analyses approach and material model parameters of NSC and UHPC are verified based on the 1/3 scaled VCC tip-over test and drop hammer test on UHPC members, respectively. Then, the refined FE model of prototypical VCC is established and utilized to examine its dynamic behaviors and damage distribution in accidental tip-over and end-drop events, in which the various influential factors, e.g., UHPC shield thickness, concrete ground thickness, and sealing methods of steel container are considered. In conclusion, by quantitatively evaluating the safety of VCC in terms of the shield damage and vibrations, it is found that adopting the 300 mm-thick UHPC shield instead of the conventional 650 mm-thick NSC shield can reduce about 1/3 of the total weight of VCC, i.e., about 50 t, and 37% floor space, as well as guarantee the structural integrity of VCC during the accidental drop simultaneously. Besides, based on the parametric analyses, the thickness of concrete ground in the VCC storage site is recommended as less than 500 mm, and the welded connection is recommended for the sealing method of steel containers.

Modeling Direct Shear Test of Crushed Stone Using DEM (개별요소법을 이용한 쇄석재료의 직접전단시험 모델링)

  • Cho, Nam-Kak;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2008
  • In this study, modeling shear characteristics of a coarse material mainly containing crushed stones were implemented using PFC2D, a commercially available code based on DEM(Discrete Element Method). Using the DEM code, this study provides the methodology considering the shear characteristics due to a irregular grain shape, GSD(Grain Size Distribution) and porosity of coarse material which are not effectively incorporated in conventional continuum numerical codes. Direct shear test was simulated for the GSD and porosity generated sample using the code and the simulated results showed very good agreement with the laboratory test results. The current modeling approach can be applied to other coarse materials having various GSD and porosities. Using such application, prediction of the strength characteristics of coarse material in field scale would be possible, which is limited in laboratory scale so far.

Evaluation of NH3 emissions in accordance with the pH of biochar

  • Yun-Gu, Kang;Jae-Han, Lee;Jin-Hyuk, Chun;Yeo-Uk, Yun;Taek-Keun, Oh;Jwa-Kyung, Sung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.787-796
    • /
    • 2021
  • Nitrogen (N) is the most important element during the process of plant growth, and the quality of crops varies depending on the amount of nitrogen present. Most of the nitrogen is used for plant growth, but approximately 10 - 20% of Nitrogen is carried away by the wind in the form of NH3. This volatilized NH3 reacts with various oxides in the atmosphere to generate secondary particulate matter. To address this, the present study attempts to reduce NH3 occurring in the soil using biochar at a specific pH. Biochar was used as a treatment with 1% (w·w-1) of the soil, and urea was applied at different levels of 160, 320, and 640 kg·N·ha-1. NH3 generated in the soil was collected using a dynamic column and analyzed using the indophenol blue method. NH3 showed the maximum emission within 4 - 7 days after the fertilizer treatment, decreasing sharply afterward. NH3 emission levels were reduced with the biochar treatment in all cases. Among them, the best reduction efficiency was found to be approximately 25% for the 320 kg·ha-1 + pH 6.7 biochar treatment. Consequently, in order to reduce the amount of NH3 generated in the soil, it is most effective to use pH 6.7 biochar and a standard amount (320 kg·N·ha-1) of urea.

Investigating the Cause of Ash Deposition and Equipment Failure in Wood Chip-Fueled Cogeneration Plant (우드칩을 연료로 하는 열병합발전소의 회분 퇴적 및 설비 고장 원인 분석)

  • Min Ji Song;Woo Cheol Kim;Heesan Kim;Jung-Gu Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • The use of biomass is increasing as a response to the convention on climate change. In Korea, a method applied to replace fossil fuels is using wood chips in a cogeneration plant. To remove air pollutants generated by burning wood chips, a selective denitrification facility (Selective catalytic reduction, SCR) is installed downstream. However, problems such as ash deposition and descaling of the equipment surface have been reported. The cause is thought to be unreacted ammonia slip caused by ammonia ions injected into the reducing agent and metal corrosion caused by an acidic environment. Element analysis confirmed that ash contained alkali metals and sulfur that could cause catalyst poisoning, leading to an increase in the size of ash particle and deposition. Measurement of the size of ash deposited inside the facility confirmed that the size of ash deposited on the catalyst was approximately three times larger than the size of generally formed ash. Therefore, it was concluded that a reduction in pore area of the catalyst by ash deposition on the surface of the catalyst could lead to a problem of increasing differential pressure in a denitrification facility.

Application of data fusion modeling for the prediction of auxin response elements in Zea mays for food security purposes

  • Nesrine Sghaier;Rayda Ben Ayed;Ahmed Rebai
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.45.1-45.7
    • /
    • 2022
  • Food security will be affected by climate change worldwide, particularly in the developing world, where the most important food products originate from plants. Plants are often exposed to environmental stresses that may affect their growth, development, yield, and food quality. Auxin is a hormone that plays a critical role in improving plants' tolerance of environmental conditions. Auxin controls the expression of many stress-responsive genes in plants by interacting with specific cis-regulatory elements called auxin-responsive elements (AuxREs). In this work, we performed an in silico prediction of AuxREs in promoters of five auxin-responsive genes in Zea mays. We applied a data fusion approach based on the combined use of Dempster-Shafer evidence theory and fuzzy sets. Auxin has a direct impact on cell membrane proteins. The short-term auxin response may be represented by the regulation of transmembrane gene expression. The detection of an AuxRE in the promoter of prolyl oligopeptidase (POP) in Z. mays and the 3-fold overexpression of this gene under auxin treatment for 30 min indicated the role of POP in maize auxin response. POP is regulated by auxin to perform stress adaptation. In addition, the detection of two AuxRE TGTCTC motifs in the upstream sequence of the bx1 gene suggests that bx1 can be regulated by auxin. Auxin may also be involved in the regulation of dehydration-responsive element-binding and some members of the protein kinase superfamily.

Estimation of Shear Moduli Degradation Characteristics from Pressuremeter Tests (프레셔미터 시험을 이용한 전단탄성계수 감쇠 특성 평가)

  • Kwon, Hyung Min;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.105-113
    • /
    • 2009
  • Pressuremeter test estimates deformational properties of soil from the relationship between applied pressure and the displacement of cavity wall, and the results reflect the in-situ stress condition and the structure of soil particles. This study suggests the overall process of test and analysis for the evaluation of nonlinear degradation characteristics of shear moduli, based on the reloading curve of pressuremeter test. The method estimates the maximum shear modulus, taking into account the difference between the stress states around the probe in reloading and that of the in-situ state, and then combines the degradation characteristics of shear moduli taken from reloading curve. This procedure derives the shear moduli in overall strain range. Pressuremeter tests were carried out in various ground conditions using large calibration chamber, together with various reference tests. Shear moduli taken from pressuremeter tests were compared with bender element test and resonant column test results.

Flexural behavior of reinforced concrete beams strengthened with an ultra-high performance concrete panel of various thicknesses

  • Seonhyeok Kim;Taegeon Kil;Sangmin Shin;Daeik Jang;H.N. Yoon;Jin-Ho Bae;Joonho Seo;Beomjoo Yang
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.487-498
    • /
    • 2023
  • The present study investigated the flexural behavior of reinforced concrete (RC) beams strengthened with an ultrahigh performance concrete (UHPC) panel having various thicknesses. Two fabrication methods were introduced in this study; one was the direct casting of UHPC onto the bottom surface of the RC beams (I-series), and the other was the attachment of a prefabricated UHPC panel using an adhesive (E-series). UHPC panels having thicknesses of 10, 30, 50, and 70 mm were applied to RC beams, and these specimens were subjected to four-point loading to assess the effect of the UHPC thickness on the flexural strengthening of RC beams. The test results indicated that the peak strength and initial stiffness were vastly enhanced with an increase in the thickness of the UHPC panel, showing an improved energy dissipation capacity. In particular, the peak strength of the E-series specimens was higher than that of I-series specimens, showing high compatibility between the RC beam and the UHPC panel. The experimental test results were comparatively explored with a discussion of numerical analysis. Numerical analysis results showed that the predictions are in fair agreement with experimental results.

A Study on the Development of a Women's Fashion Design Prototype Applying the Characteristics of Neo-Deconstructivist Fashion

  • Zhongyue Lyu;Young Jae Lee
    • Journal of Fashion Business
    • /
    • v.27 no.6
    • /
    • pp.124-146
    • /
    • 2023
  • This study analyzes the characteristics of each element of neo-deconstructivist fashion design and examines fashion expression methods and techniques. This study combines theoretical research and case analysis to analyze the aesthetic characteristics of neo-deconstructivist fashion and the expressive characteristics of neo-deconstructivist fashion. Through analysis of previous research, the aesthetic characteristics of neo-deconstructivism were derived as inclusiveness, playfulness, communication, and intertextuality. Inclusivity in fashion refers to including various people, body types, aesthetics, and cultural backgrounds in the scope of design, and does not limit the scope of clothing design based on individual differences such as body type or gender. Playfulness is a neo-deconstructive fashion brand that combines exaggerated makeup, vibrant colors, intriguing designs, and imaginative fashion shows to spread upbeat and playful ideas. Communication in neo-deconstructivist fashion demonstrates communication through the use of creative themes and items that reflect consumers' needs through design and the consumer's fashion presentation method. Through the mutual quotation of aspects like traits, status, T.P.O., and materials that can reveal opposing texts, intertextuality emerged as a tendency to break up binary oppositions or break away from genres. The expressive qualities of neo-deconstructivist fashion design were examined and applied to the creation of innovative fashion design through examination of the case's silhouette, color, and material. Six sets of women's clothing were designed and produced. The results of this study can be used as basic data for the development of neo-deconstructivist fashion design, and are expected to provide a wide range of inspiration for fashion design ideas.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

Impact Tensile Properties and Intergranular Fracture Behavior with Strain Rate Variations of Al-M g-X (X = Cr,Si) Alloy

  • Chang-Suk Han;Min-Gyu Chun;Sung-Soon Park;Seung-In Lim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.330-340
    • /
    • 2024
  • Al-Mg-Si alloys are light weight and have excellent corrosion resistance, and are attracting attention as a liner material for high-pressure hydrogen containers in hydrogen fuel cell vehicles. Because it has excellent plastic hardening properties, it is also applied to car body panel materials, but it is moderate in strength, so research to improve the strength by adding Si-rich or Cu is in progress. So far, the authors have conducted research on the intergranular fracture of alloys with excessive Si addition from the macroscopic mechanical point of view, such as specimen shape. To evaluate their impact tensile properties, the split-Hopkinson bar impact test was performed using thin plate specimens of coarse and fine grain alloys of Al-Mg-X (X = Cr,Si) alloy. The effect of the shape of the specimen on the characteristics was studied through finite element method (FEM) analysis. As a result, it was found that the intergranular fracture of the alloy with excessive Si depended on the specimen width (W)/grain size (d), which can be expressed by the specimen size and grain size. As W/d decreases, the intergranular fracture transforms into a transgranular fracture. As the strain rate increases, the fracture elongation decreases, and the fracture surface of the intergranular fracture becomes more brittle. It was confirmed that intergranular fracture occurred in the high strain rate region even in materials with small grain sizes.