DOI QR코드

DOI QR Code

Estimation of Shear Moduli Degradation Characteristics from Pressuremeter Tests

프레셔미터 시험을 이용한 전단탄성계수 감쇠 특성 평가

  • 권형민 (한국건설기술연구원 지반연구실) ;
  • 정충기 (서울대학교 건설환경공학부)
  • Received : 2009.01.28
  • Accepted : 2009.03.26
  • Published : 2009.05.31

Abstract

Pressuremeter test estimates deformational properties of soil from the relationship between applied pressure and the displacement of cavity wall, and the results reflect the in-situ stress condition and the structure of soil particles. This study suggests the overall process of test and analysis for the evaluation of nonlinear degradation characteristics of shear moduli, based on the reloading curve of pressuremeter test. The method estimates the maximum shear modulus, taking into account the difference between the stress states around the probe in reloading and that of the in-situ state, and then combines the degradation characteristics of shear moduli taken from reloading curve. This procedure derives the shear moduli in overall strain range. Pressuremeter tests were carried out in various ground conditions using large calibration chamber, together with various reference tests. Shear moduli taken from pressuremeter tests were compared with bender element test and resonant column test results.

프레셔미터 시험은 하중에 따른 변위 곡선에 기초하여 지반의 변형특성을 평가할 수 있는 시험 방법으로 현장의 응력 상태 및 토체의 입자 구조를 그대로 반영하여 지반의 비선형적인 변형특성을 평가할 수 있는 장점을 지니고 있다. 본 연구에서는 교란의 영향을 최소화 할 수 있는 하중 재재하 곡선을 이용하여 전단탄성계수의 감쇠 특성을 평가할 수 있는 시험및 해석 방법을 제안하고 있다. 하중 제하-재재하 과정에서 발생될 수 있는 원지반과의 응력 차이를 고려하여 최대 전단탄성계수를 산정하고, 재재하 곡선의 감쇠 특성과 결합하여 변형률 크기에 따라 감쇠되는 전단탄성계수의 특성을 평가하고 있다. 이를 위하여, 대형 압력 토조를 이용하여 다양한 지반 조건에서 프레셔미터 시험을 수행하였으며, 벤더 엘리먼트 시험및 공진주 시험을 통하여 전단탄성계수 감쇠 특성을 평가, 비교하였다.

Keywords

References

  1. 고영주, 정영훈, 이충현, 정충기(2008) 사질토의 전단 하중 재하시 다축 벤더엘리먼트 시험으로 구한 이방적 전단탄성계수,대한토목학회논문집, 대한토목학회, 제28권 제3C호, pp. 159-166.
  2. 권형민(2007) Estimation of nonlinear deformation characteristics of sandy soil using pressuremeter tests, 박사학위논문, 서울대학교.
  3. 권형민, 장순호, 정충기(2008) 프레셔미터 시험을 이용한 사질토지반의 최대 전단탄성계수 결정, 대한토목학회논문집, 대한토목학회, 제28권 제3C호, pp. 179-186.
  4. Atkinson, J.H. and Sallfors, G. (1991) Experimental determination of stress strain time characteristics in laboratory and in situ tests, Proc. 10th Eur. Conf. SMFE, Florence, Italy, pp. 915-956.
  5. Bellotti, R., Ghionna, V., Jamiolkowski, M., Robertson, P.K., and Peterson, R. W. (1989) Interpretation of moduli from self-boring pressuremeter tests in sands. Geotechnique, Vol. 39, No. 2, pp. 269-292. https://doi.org/10.1680/geot.1989.39.2.269
  6. Burland, J.B. (1989) Ninth Lauritis Bjerrum Memorial Lecture : ‘small is beautiful’ - The stiffness of soil at small strains, Canadian Geotechnical Journal, Vol. 26, pp. 499-516. https://doi.org/10.1139/t89-064
  7. Clarke, B.G. (1995) Pressuremeters in geotechnical design, Blackie Academic and Professional.
  8. Fahey, M. (1992) Shear modulus of cohesionless soil : variation with stress and strain level, Canadian Geotechnical Journal, Vol. 29, pp. 157-161. https://doi.org/10.1139/t92-017
  9. Fahey, M. and Carter, J.P. (1993) A finite element study of the pressuremeter test in sand using a nonlinear elastic plastic model, Canadian Geotechnical Journal, Vol. 30, No. 2, pp. 348-362. https://doi.org/10.1139/t93-029
  10. Hardin, B.O. and Blandford, G.E. (1989) Elasticity of particulate materials, Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 6, pp. 788-805. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:6(788)
  11. Hughes, J.M.O. (1982) Interpretation of pressuremeter tests for the determination of the elastic shear modulus, Proc. Conf. Updating Subsurface Sampling of Soils and Rocks and their In Situ Testing, Santa Barbara, pp. 279-290.
  12. Jardine, R.J. (1991) Discussion on “Strain dependent moduli and pressuremeter tests”, Geotechnique, Vol. 41, No. 4, pp. 621-626. https://doi.org/10.1680/geot.1991.41.4.621
  13. Jardine, R.J. (1995) Some observations on the kinematic nature of soil stiffness, Soils and Foundations, Vol. 32, No. 2, pp. 111-124.
  14. Kim, D.S. and Stokoe, K.H. (1994) Torsional motion monitoring system for small-strain (10-5% to 10-3%) soil testing, Geotechnical Testing Journal, Vol. 17, No. 1, pp. 17-21. https://doi.org/10.1520/GTJ10068J
  15. Kohata, Y., Tatsuoka, F., Wang, L., Jiang, G.L., Hoque, E., and Kodaka, T. (1997) Modelling the non-linear deformation properties of stiff geomaterials, Geotechnique, Vol. 47, No. 3, pp. 563-580. https://doi.org/10.1680/geot.1997.47.3.563
  16. Lashkaripour, G. and Ajalloeian, R. (2003) Determination of silica sand stiffness, Engineering Geology, Vol. 68, pp. 225-236. https://doi.org/10.1016/S0013-7952(02)00229-6
  17. Li, X.S., Yang, J., and Liu, H.L. (1998) Differentiation of noisy experimental data for interpretation of nonlinear stress-strain behavior, Journal of Engineering Mechanics, Vol. 124, No. 7, pp. 705-712. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:7(705)
  18. Ng, C.W.W., Pun, W.K., and Pang, R.P.L (2000) Small strain stiffness of natural granite saprolite in Hong Kong, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 9, pp. 819-833. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:9(819)
  19. Ng, C.W.W. and Wang, Y. (2001) Field and laboratory measurements of small strain stiffness of decomposed granites, Soils and Foundation, Vol. 41, No. 3, pp. 57-71. https://doi.org/10.3208/sandf.41.3_57
  20. Robertson, P.K. (1986) In situ testing and its application to foundation engineering. Canadian Geotechnical Journal, Vol. 23, No. 4, pp. 573-594. https://doi.org/10.1139/t86-086
  21. Robertson, P.K. and Ferreira, R.S. (1993) Seismic and pressuremeter testing to determine soil modulus, Predictive Soil Mechanics, Proc., Wroth Memorial Symp., Oxford, U.K., pp. 562-580.
  22. Salgado, R., Mitchell, J., and Jamiolkowski, M. (1998) Calibration chamber size effects on penetration resistance in sand, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 9, pp. 878-887. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(878)
  23. Santagata, M., Germaine, J.T., and Ladd, C.C. (2007) Small-strain nonlinearity of normally consolidated clay, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 1, pp. 72-82. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(72)
  24. Sweeney, B.P. and Clough, G.W. (1990) Design of large calibration chamber, Geotechnical Testing Journal, Vol. 13, No. 1, pp. 36-44. https://doi.org/10.1520/GTJ10144J
  25. Tatsuoka, F. and Shibuya, S. (1991) Deformation Characteristics of Soils and Rocks from Field and Laboratory Tests, Key Note Lecture for Session No. 1, The 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Bangkok, pp.101-170.
  26. Wang, Y. and O'Rourke, T.D. (2007) Interpretation of secant shear modulus degradation characteristics from pressuremeter tests, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 12, pp. 1556-1566. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1556)
  27. Wood, D.M. (1990) Strain-dependent moduli and pressuremeter tests, Geotechnique, Vol. 40, No. 5, pp. 509-512. https://doi.org/10.1680/geot.1990.40.3.509
  28. Wroth, C.P. (1982) British experience with the self-boring pressuremeter, Proc. of International Symposium - Pressuremeter and its Marine Application, Paris, pp. 143-164.