DOI QR코드

DOI QR Code

Flexural behavior of reinforced concrete beams strengthened with an ultra-high performance concrete panel of various thicknesses

  • Seonhyeok Kim (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Taegeon Kil (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Sangmin Shin (Korea Institute of Civil Engineering and Building Technology) ;
  • Daeik Jang (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • H.N. Yoon (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jin-Ho Bae (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Joonho Seo (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Beomjoo Yang (School of Civil Engineering, Chungbuk National University)
  • Received : 2022.11.07
  • Accepted : 2023.07.05
  • Published : 2023.11.25

Abstract

The present study investigated the flexural behavior of reinforced concrete (RC) beams strengthened with an ultrahigh performance concrete (UHPC) panel having various thicknesses. Two fabrication methods were introduced in this study; one was the direct casting of UHPC onto the bottom surface of the RC beams (I-series), and the other was the attachment of a prefabricated UHPC panel using an adhesive (E-series). UHPC panels having thicknesses of 10, 30, 50, and 70 mm were applied to RC beams, and these specimens were subjected to four-point loading to assess the effect of the UHPC thickness on the flexural strengthening of RC beams. The test results indicated that the peak strength and initial stiffness were vastly enhanced with an increase in the thickness of the UHPC panel, showing an improved energy dissipation capacity. In particular, the peak strength of the E-series specimens was higher than that of I-series specimens, showing high compatibility between the RC beam and the UHPC panel. The experimental test results were comparatively explored with a discussion of numerical analysis. Numerical analysis results showed that the predictions are in fair agreement with experimental results.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea grant funded by the Korean government (MSIT) (2020R1C1C1005063).

References

  1. ABAQUS (2013), 6.13 Analysis User's Manual, SIMULIA, Providence, IR, USA.
  2. Al-Osta, M., Isa, M., Baluch, M. and Rahman, M. (2017), "Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete", Constr. Build. Mater., 134, 279-296. https://doi.org/10.1016/j.conbuildmat.2016.12.094.
  3. ASTM-C143 (2015), Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, USA.
  4. ASTM-C1437 (2020), Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, PA, USA.
  5. ASTM-C348 (2021), Standard Test Method for Flrexural Strength of Hydraulic-Cement Mortars, ASTM International, West Conshohocken, PA, USA.
  6. ASTM-C39/C39M (2021), Standard Test Method Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  7. ASTM-C469 (2021), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA.
  8. ASTM-C496 (2021), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  9. ASTM C496-96 (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  10. Attari, N., Amziane, S. and Chemrouk, M. (2012), "Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets", Constr. Build. Mater., 37, 746-757. https://doi.org/10.1016/j.conbuildmat.2012.07.052.
  11. Bang, J., Bae, J.H., Jung, J. and Yang, B. (2022), "A Short review of the literature on the multiscale modeling of nanoparticle-reinforced composites", Multiscale Sci. Eng., 4(3), 94-101. https://doi.org/10.1007/s42493-022-00083-y.
  12. Buyukozturk, O. and Hearing, B. (1998), "Failure behavior of precracked concrete beams retrofitted with FRP", J. Compos. Constr., 2(3), 138-144. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:3(138).
  13. Cai, B., Wu, A. and Fu, F. (2020), "Bond behavior of PP fiber-reinforced cinder concrete after fire exposure", Comput. Concrete, 26(2), 115-125. https://doi.org/10.12989/cac.2020.26.2.115.
  14. CEN (2004), 1-1. Eurocode 2: Design of concrete structures-Part 1-1: General rules and rules for buildings, European Committee for Standardization, Brussels, Belgium.
  15. Choi, S.H., Heo, I., Kim, J.H., Jeong, H., Lee, J.Y. and Kim, K.S. (2022), "Flexural behavior of post-tensioned precast concrete girder at negative moment region", Comput. Concrete, 30(1), 75-83. https://doi.org/10.12989/cac.2022.30.1.075.
  16. Deng, Z. (2005), "The fracture and fatigue performance in flexure of carbon fiber reinforced concrete", Cement Concrete Compos., 27(1), 131-140. https://doi.org/10.1016/j.cemconcomp.2004.03.002.
  17. El-Enein, H.A., Azimi, H., Sennah, K. and Ghrib, F. (2014), "Flexural strengthening of reinforced concrete slab-column connection using CFRP sheets", Constr. Build. Mater., 57, 126-137. https://doi.org/10.1016/j.conbuildmat.2014.01.077.
  18. El-Mihilmy, M.T. and Tedesco, J.W. (2000), "Analysis of reinforced concrete beams strengthened with FRP laminates", J. Struct. Eng., 126(6), 684-691. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:6(684).
  19. Gil-Martina, L.M. and Hernandez-Montes, E. (2021), "Review of the reinforcement sizing in the strength design of reinforced concrete slabs", Comput. Concrete, 27(3), 211-223. https://doi.org/10.12989/cac.2021.27.3.211.
  20. Haile, B.F., Jin, D., Yang, B., Park, S. and Lee, H.K. (2019), "Multi-level homogenization for the prediction of the mechanical properties of ultra-high-performance concrete", Constr. Build. Mater., 229, 116797. https://doi.org/10.1016/j.conbuildmat.2019.116797.
  21. Hamdia, K.M., Silani, M, Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fract., 206, 215-227. https://doi.org/10.1007/s10704-017-0210-6.
  22. Hussein, H.H., Walsh, K.K., Sargand, S.M. and Steinberg, E.P. (2016), "Interfacial properties of ultrahigh-performance concrete and high-strength concrete bridge connections", J. Mater. Civil Eng., 28(5), 04015208. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001456.
  23. Hussein, L. and Amleh, L. (2015), "Structural behavior of ultrahigh performance fiber reinforced concrete-normal strength concrete or high strength concrete composite members", Constr. Build. Mater., 93, 1105-1116. https://doi.org/10.1016/j.conbuildmat.2015.05.030.
  24. Jang, H.G., Yang, B., Khil, M.S., Kim, S.Y. and Kim, J. (2019), "Comprehensive study of effects of filler length on mechanical, electrical, and thermal properties of multi-walled carbon nanotube/polyamide 6 composites", Compos. Part A: Appl. Sci. Manuf., 125, 105542. https://doi.org/10.1016/j.compositesa.2019.105542.
  25. Jeon, I., Yun, T. and Yang, S. (2022), "Classical, coarse-grained, and reactive molecular dynamics simulations on polymer nanocomposites", Multiscale Sci. Eng., 4(4), 1-18. https://doi.org/10.1007/s42493-022-00086-9.
  26. Kassem, C., Farghaly, A.S. and Benmokrane, B. (2011), "Evaluation of flexural behavior and serviceability performance of concrete beams reinforced with FRP bars", J. Compos. Constr., 15(5), 682-695. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000216.
  27. Kim, K., Jung, Y.C., Kim, S.Y., Yang, B.J. and Kim, J. (2018), "Adhesion enhancement and damage protection for carbon fiber-reinforced polymer (CFRP) composites via silica particle coating", Compos. Part A: Appl. Sci. Manuf., 109, 105-114. https://doi.org/10.1016/j.compositesa.2018.02.042.
  28. Lee, H.K. and Hausmann, L. (2004), "Structural repair and strengthening of damaged RC beams with sprayed FRP", Compos. Struct., 63(2), 201-209. https://doi.org/10.1016/S0263-8223(03)00156-9.
  29. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  30. Lee, N.K., Koh, K., Kim, M.O. and Ryu, G. (2018), "Uncovering the role of micro silica in hydration of ultra-high performance concrete (UHPC)", Cement Concrete Res., 104, 68-79. https://doi.org/10.1016/j.cemconres.2017.11.002.
  31. Lubbers, A.R. (2003), "Bond performance between ultra-high performance concrete and prestressing strands", Doctoral Dissertation, Ohio University, Athens, OH, USA.
  32. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  33. Manfredi, G. and Pecce, M. (1997), "Low cycle fatigue of RC beams in NSC and HSC", Eng. Struct., 19(3), 217-223. https://doi.org/10.1016/S0141-0296(96)00081-8.
  34. Monti, G. and Liotta, M.A. (2005), "FRP-strengthening in shear: Tests and design equations", Spec. Publ., 230, 543-562. https://doi.org/10.14359/14853.
  35. Murthy, A.R., Karihaloo, B.L. and Priya, D.S. (2018b), "Flexural behavior of RC beams retrofitted with ultra-high strength concrete", Constr. Build. Mater., 175, 815-824. https://doi.org/10.1016/j.conbuildmat.2018.04.174.
  36. Murthy, A.R., Karihaloo, B.L., Rani, P.V. and Priya, D.S. (2018a), "Fatigue behaviour of damaged RC beams strengthened with ultra high performance fibre reinforced concrete", Int. J. Fatigue, 116, 659-668. https://doi.org/10.1016/j.ijfatigue.2018.06.046.
  37. Park, S., Yang, B., Kim, B., Ha, S. and Lee, H. (2017), "Structural strengthening and damage behaviors of hybrid sprayed fiber-reinforced polymer composites containing carbon fiber cores", Int. J. Damage Mech., 26(2), 358-376. https://doi.org/10.1177/1056789516673887.
  38. Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Method Appl. M., 196(29-30), 2777-2799. https://doi.org/10.1016/j.cma.2006.06.020.
  39. Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: A simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151.
  40. Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, H. (2008), "A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures", Eng. Fract. Mech., 75(16), 4740-4758. https://doi.org/10.1016/j.engfracmech.2008.06.019.
  41. Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, H. (2010), "A simple and robust three-dimensional cracking-particle method without enrichment", Comput. Method Appl. M., 199(37-40), 2437-2455. https://doi.org/10.1016/j.cma.2010.03.031.
  42. Spadea, G., Bencardino, F. and Swamy, R.N. (1998), "Structural behavior of composite RC beams with externally bonded CFRP", J. Compos. Constr., 2(3), 132-137. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:3(132).
  43. Theriault, M. and Benmokrane, B. (1998), "Effects of FRP reinforcement ratio and concrete strength on flexural behavior of concrete beams", J. Compos. Constr., 2(1), 7-16. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:1(7).
  44. Toutanji, H., Zhao, L. and Zhang, Y. (2006), "Flexural behavior of reinforced concrete beams externally strengthened with CFRP sheets bonded with an inorganic matrix", Eng. Struct., 28(4), 557-566. https://doi.org/10.1016/j.engstruct.2005.09.011.
  45. Wenwei, W. and Guo, L. (2006), "Experimental study and analysis of RC beams strengthened with CFRP laminates under sustaining load", Int. J. Solids Struct., 43(6), 1372-1387. https://doi.org/10.1016/j.ijsolstr.2005.03.076.
  46. Yalcinkaya, C. and Yazici, H. (2017), "Effects of ambient temperature and relative humidity on early-age shrinkage of UHPC with high-volume mineral admixtures", Constr. Build. Mater., 144, 252-259. https://doi.org/10.1016/j.conbuildmat.2017.03.198.