• Title/Summary/Keyword: applied element method

Search Result 3,679, Processing Time 0.035 seconds

A Study on Decision of Cut Rock Slope Angle Applied Shear Strength of Continuum Rock Mass Induced from Hoek-Brown Failure Criterion (Hoek-Brown 파괴기준에서 유도된 연속체암반의 전단강도를 적용한 깎기 암반사면 경사 결정 연구)

  • Kim, Hyungmin;Lee, Byokkyu;Woo, Jaegyung;Hur, Ik;Lee, Junki;Lee, Sugon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.13-21
    • /
    • 2019
  • There are many cuts or natural rock slopes that remain stable for a long time in the natural environment with steep slopes ($65^{\circ}$ to $85^{\circ}$). In terms of design practice, the rock mass consisting of similar rock condition and geological structures is defined as a good continuum rock slope, and during the process of decision making angle of this rock slope, it will be important to establish the geotechnical properties estimating method of the continuum rock on the process of stability analysis in the early stages of design and construction. In this study, the stability analysis of a good continuum rock slope that can be designed as a steep slope proposed a practical method of estimating the shear strength by induced from the Hoek-Brown failure criterion, and in addition, the design applicability was evaluated through the stability analysis of steep rock slope. The existing method of estimating the shear strength was inadequate for practical use in the design, as the equivalent M-C shear strength corresponding to the H-B envelope changes sensitively, even with small variations in confining stress. To compensate for this problem, it was proposed to estimate equivalent M-C shear strength by iso-angle division method. To verify the design applicability of the iso-angle division method, the results of the safety factor and the displacement according to the change in angle of the cut slope constructed at the existing working design site were reviewed. The safety factor is FS=16~59 on the 1:0.5 slope, FS=12~52 on the 1:0.3 slope, most of which show a 10~12 percent reduction. Displacement is 0.126 to 0.975 mm on the 1:0.5 slope, 0.152 to 1.158 mm on the 1:0.3 slope, and represents an increase of 10 to 15%. This is a slightly change in normal proportion and is in good condition in terms of stability. In terms practical the working design, it was confirmed that applying the shear strength estimated by Iso-angle division method derived from the H-B failure criterion as a universal shear strength for a good continuum rock mass slope was also able to produce stable and economic results. The procedure for stability analysis using LEM (Limit Equilibrium Analysis Method) and FEM (Finite Element Analysis Method) will also be practical in the rock slope where is not distributed fault. The study was conducted by selecting the slope of study area as a good rock condition, establishing a verification for which it can be applied universal to a various rock conditions will be a research subject later on.

Evaluation of Optimum Contents of Hydrated-Lime and Anti-Freezing Agent for Low-Noise Porous Asphalt Mixture considering Moisture Resistance (수분민감성 관련 소석회 및 박리방지제 첨가 투수성 가열 아스팔트 혼합물의 최적 함량 평가)

  • Kim, Dowan;Lee, Sangyum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.123-130
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to determine the moisture resistance of the freeze-thaw process occurring in low-noise porous pavement using either hydrated-lime or anti-freezing agent. Various additives were applied to low-noise porous asphalt, which is actively paved in South Korea, to overcome its disadvantages. Moreover, the optimum contents of hydrated-lime and anti-freezing agent and behavior properties of low-noise porous asphalt layer are determined using dynamic moduli via the freeze-thaw test. METHODS : The low-noise porous asphalt mixtures were made using gyratory compacters to investigate its properties with either hydrated-lime or anti-freezing agent. To determine the dynamic moduli of each mixture, impact resonance test was conducted. The applied standard for the freeze-thaw test of asphalt mixture is ASTM D 6857. The freeze-thaw and impact resonance tests were performed twice at each stage. The behavior properties were defined using finite element method, which was performed using the dynamic modulus data obtained from the freeze-thaw test and resonance frequencies obtained from non-destructive impact test. RESULTS : The results show that the coherence and strength of the low-noise porous asphalt mixture decreased continuously with the increase in the temperature of the mixture. The dynamic modulus of the normal low-noise porous asphalt mixture dramatically decreased after one cycle of freezing and thawing stages, which is more than that of other mixtures containing additives. The damage rate was higher when the freeze-thaw test was repeated. CONCLUSIONS : From the root mean squared error (RMSE) and mean percentage error (MPE) analyses, the addition rates of 1.5% hydrated-lime and 0.5% anti-freezing agent resulted in the strongest mixture having the highest moisture resistance compared to other specimens with each additive in 1 cycle freeze-thaw test. Moreover, the freeze-thaw resistance significantly improved when a hydrated-lime content of 0.5% was applied for the two cycles of the freeze-thaw test. Hence, the optimum contents of both hydrated-lime and anti-freezing agent are 0.5%.

A Study on the Design of Horizontal Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 2) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 수평 이송 기구 설계에 관한 연구(파트 2))

  • Park, Hoo-Myung;Sung, Jae-Kyung;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.52-59
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. To achieve this goal, this study designed a horizontal transfer as the second project continued to the first project that designed a upward and downward traverse unit. A horizontal traverse unit shows a symmetric structure and consists of frame, which consists of four unit tools, motor and reducer, which are fixed at a frame, operation unit with pinions, first traverse unit, and second traverse unit. Constraint conditions based on the operation mechanism with these elements were configured and obtained following results after modeling a model for a traverse motor. In the kinematic expression of sliding motion with one degree of freedom, the sliding motion is constrained. Also, the rack 3 installed at a frame is used to configure possible kinematic constraint conditions of the rack 2 according to the rolling motion of the pinion 2 in the first traverse unit. In addition, the moment of inertia that is a type of kinetic energy in a converted horizontal traverse unit in the side of the reducer can be applied to introduce the moment of inertia of a converted horizontal traverse unit in the side of the reducer by using the sum of kinetic energy in the rack and pinion, which is a part of the horizontal traverse unit. Also, the equation of motion of the converted upward and downward traverse unit in the side of the motor using the equation of motion of the motor. Furthermore, the horizontal traverse unit predetermines the mass of the first and second traverse unit and applied load including the radius and reduction ratio of the pitch circle in the pinion 1 and applied load to the rack 2. Then, a proper motor can be determined using several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. In future studies later this study, a simulation that verifies the results of the previous two stages of studies using a finite element method.

  • PDF

Acetylcholinesterase-based Biosensor for Detection of Residual Organophosphates and Carbamates Insecticides (유기인계 및 카바메이트계 농약을 측정할 수 있는 바이오 센서의 개발)

  • Kim, Young-Mee;Kim, Jin-Young;Cho, Moon-Jae;Chang Kong-Man;Hyun, Hae-Nam;Cho, Somi K.
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.315-321
    • /
    • 2006
  • Inhibitors of acetylcholinesterase(AchE), such as organophosphates and carbamates, interfere the action of AchE in nerve and may lead to a severe impairment of nerve functions or even death. Therefore, insect AchE is the biological target of predominant insecticides used in agriculture. Biosensors are sensitive and can be used as dispoisable sensors for environmental control. In recent years, the use of AchEs in biosensor technology has gained enormous attention, in particular with respect to insecticide detection. The principle of biosensors using AchE as a biological recognition element is based on the inhibition the catalytic activity by the agents to be detected. We here present a strip-type biosensor based on AchE inhibition. In this study, acetylcholinesterase and PVA-SbQ(polyvinyl alcohol functionalized with methyl pyridinium methyl sulfate) were co-immobilized on immobilone-P membranes. Immobilization of the enzymes showed a stability in 6 months without activity loss in $4^{\circ}C$ storage. Enzymes immobilized on surfaces of membrane responded to organophosphates and carbamate more sensitivitive than enzyme in solution. Organophosphates and carbamates concentrations could be detected by entrapped and surface immobilized enzymes, in 5 min. For chlorpyrifos, carbofuran, cabaryl, and methidathion, the detection limits of AChE-strip were similar to that of HPLC/GC method.

Application of Laser-Induced Breakdown Spectroscopy (LIBS) for In-situ Detection of Heavy Metals in Soil (토양내 중금속 실시간 탐지를 위한 레이저 유도붕괴 분광법의 활용에 대한 소개)

  • Ko, Eun-Joung;Hamm, Se-Yeong;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.563-574
    • /
    • 2007
  • Laser induced breakdown spectroscopy (LIBS) is a recently developed analytical technique that is based upon the measurement of emission lines generated by atomic species close to the surface of the sample, thus allowing their chemical detection, identification and quantification. With powerful advantages of LIBS compared to the conventional analytical methodology, this technique can be applied in the detection of heavy metals in the field. LIBS allows the rapid analysis by avoiding laborious chemical steps. LES have already been applied for the determination of element concentration in a wide range of materials in the solid, liquid and gaseous phase with simplicity of the instrument and diversity of the analytical application. These feasibility of rapid multi elemental analysis are appealing proprieties for the in-situ analytical technique in geochemical investigation, exploration and environmental analysis. There remain still some limitations to be solved for LIBS to be applied in soil environment as an in-situ analytical technology. We would like to provide the basic principle related to the plasma formation and laser-induced breakdown of sample materials. In addition, the matrix effect, laser properties and the various factors affecting on the analytical signal of LIBS was dealt with to enhance understanding of LIBS through literature review. Ultimately, it was investigated the feasibility of LIBS application in soil environment monitoring by considering the basic idea to enhance the data quality of LIBS including the calibration method for the various effects on the analytical signal of LIBS.

System Reliability-Based Design Optimization Using Performance Measure Approach (성능치 접근법을 이용한 시스템 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.193-200
    • /
    • 2010
  • Structural design requires simultaneously to ensure safety by considering quantitatively uncertainties in the applied loadings, material properties and fabrication error and to maximize economical efficiency. As a solution, system reliability-based design optimization (SRBDO), which takes into consideration both uncertainties and economical efficiency, has been extensively researched and numerous attempts have been done to apply it to structural design. Contrary to conventional deterministic optimization, SRBDO involves the evaluation of component and system probabilistic constraints. However, because of the complicated algorithm for calculating component reliability indices and system reliability, excessive computational time is required when the large-scale finite element analysis is involved in evaluating the probabilistic constraints. Accordingly, an algorithm for SRBDO exhibiting improved stability and efficiency needs to be developed for the large-scale problems. In this study, a more stable and efficient SRBDO based on the performance measure approach (PMA) is developed. PMA shows good performance when it is applied to reliability-based design optimization (RBDO) which has only component probabilistic constraints. However, PMA could not be applied to SRBDO because PMA only calculates the probabilistic performance measure for limit state functions and does not evaluate the reliability indices. In order to overcome these difficulties, the decoupled algorithm is proposed where RBDO based on PMA is sequentially performed with updated target component reliability indices until the calculated system reliability index approaches the target system reliability index. Through a mathematical problem and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

Exploring the 4th Industrial Revolution Technology from the Landscape Industry Perspective (조경산업 관점에서 4차 산업혁명 기술의 탐색)

  • Choi, Ja-Ho;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.59-75
    • /
    • 2019
  • This study was carried out to explore the 4th Industrial Revolution technology from the perspective of the landscape industry to provide the basic data necessary to increase the virtuous circle value. The 4th Industrial Revolution, the characteristics of the landscape industry and urban regeneration were considered and the methodology was established and studied including the technical classification system suitable for systematic research, which was selected as a framework. First, the 4th Industrial Revolution technology based on digital data was selected, which could be utilized to increase the value of the virtuous circle for the landscape industry. From 'Element Technology Level', and 'Core Technology' such as the Internet of Things, Cloud Computing, Big Data, Artificial Intelligence, Robot, 'Peripheral Technology', Virtual or Augmented Reality, Drones, 3D 4D Printing, and 3D Scanning were highlighted as the 4th Industrial Revolution technology. It has been shown that it is possible to increase the value of the virtuous circle when applied at the 'Trend Level', in particular to the landscape industry. The 'System Level' was analyzed as a general-purpose technology, and based on the platform, the level of element technology(computers, and smart devices) was systematically interconnected, and illuminated with the 4th Industrial Revolution technology based on digital data. The application of the 'Trend Level' specific to the landscape industry has been shown to be an effective technology for increasing the virtuous circle values. It is possible to realize all synergistic effects and implementation of the proposed method at the trend level applying the element technology level. Smart gardens, smart parks, etc. have been analyzed to the level they should pursue. It was judged that Smart City, Smart Home, Smart Farm, and Precision Agriculture, Smart Tourism, and Smart Health Care could be highly linked through the collaboration among technologies in adjacent areas at the Trend Level. Additionally, various utilization measures of related technology applied at the Trend Level were highlighted in the process of urban regeneration, public service space creation, maintenance, and public service. In other words, with the realization of ubiquitous computing, Hyper-Connectivity, Hyper-Reality, Hyper-Intelligence, and Hyper-Convergence were proposed, reflecting the basic characteristics of digital technology in the landscape industry can be achieved. It was analyzed that the landscaping industry was effectively accommodating and coordinating with the needs of new characters, education and consulting, as well as existing tasks, even when participating in urban regeneration projects. In particular, it has been shown that the overall landscapig area is effective in increasing the virtuous circle value when it systems the related technology at the trend level by linking maintenance with strategic bridgehead. This is because the industrial structure is effective in distributing data and information produced from various channels. Subsequent research, such as demonstrating the fusion of the 4th Industrial Revolution technology based on the use of digital data in creation, maintenance, and service of actual landscape space is necessary.

A Study on PIXE Spectrum Analysis for the Determination of Elemental Contents (원소별 함량결정을 위한 PIXE 스펙트럼 분석에 관한 연구)

  • Jong-Seok OH;;Hae-ILL Bak
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 1990
  • The PIXE (Proton Induced X-ray Emission) method is applied to the quantitative analysis of trace elements in tap water, red wine, urine and old black powder samples. Sample irradiations are performed with a 1.202 MeV proton beam from the SNU 1.5-MV Tandem Van de Graaff accelerator, and measurements of X-ray spectra are made by the Si(Li) spectrometer To increase the sensitivity of analysis tap water is preconcentrated by evaporation method. As an internal standard, Ni powder is mixed with black powder sample and yttrium solution is added to the other samples. The analyses of the PIXE spectra are carried out by using the AXIL (Analytical X-ray Analysis by Iterative Least-squares) computer code, in which the routine for least-squares method is based on the Marquardt algorithm. The elements such as Mg, Al, Si, Ti, Fe and Zn are analyzed at sub-ppm levels in the tap water sample. In the red wine sample prepared without preconcentration. the element Ti is detected in the amount of 3ppm. In conclusion, the PIXE method is proved to be appropriate for the analysis of liquid samples by relative measurements using the internal standard. and is expected to be improved by the use of evaluated X-ray production cross-sections and the development of sample preparation techniques.

  • PDF

Estimation of Bond Performance Improvement by Surface Treatment Equipments and Polymer Content by Boned Concrete Overlays (접착식 콘크리트 덧씌우기 경계면 처리 방식 및 폴리머 혼입률에 따른 부착성능 평가)

  • Jung, Won Kyong;Kim, Hyun Seok;Kwon, Oh Seon;Kim, Hyung Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2016
  • Repair methods of aging concrete pavement are generally used composite structure pavements, such a composite structure is subjected to a large impact on the mechanical behavior and ensure long-term commonality integrated under vehicle loads, environmental loads of the public in accordance with the bond strength between old and new concrete. A common of bonded concrete overlays that are currently available is Interface arrangements using a variety of equipment to ensure the excellent bond strength between old and new concrete than standard concrete, mixed with a material such as a polymer in order to improve the adhesion with the material itself. However, these method of constructions are being applied, depending on the developer site presents no special specifications apply when a specific application criteria objectively, this is due to the situation of each individual method, which is based on the difficulty in quality control of the site manager. In this study by performing a field test for polymer content via the variables that contribute most significantly to ensure bond strength and the field element core of the interface processing method and materials to ensure bond strength between the old and the new concrete, it was to derive the construction site construction method that can improve the performance of the bond strength through a review of the construction around the correlations and the bond strength according to the effective performance analysis of the conventional surface treatment process and variation of polymer volume fraction.

Analysis of nested HTS magnets considering the magnitude and orientation of applied magnetic field (인가자장의 크기와 방향을 고려한 고온초전도 다중마그넷의 특성 해석)

  • Park, Ju-Gyeong;Cha, Guee-Soo;Lee, Hee-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.23-30
    • /
    • 2017
  • Most superconducting magnets which generate more than 20 T consist of nested magnets. A combination of LTS and HTS magnets is conventionally used, but high field magnets which use only HTS magnets have been developed recently. As HTS wires have very strong magnetic anisotropy, appropriate techniques should be used to consider this effect properly. The load line method has been conventionally used to design nested magnets for high field generation. Because this method considers only parallel and perpendicular magnetic fields, the effect of their orientation is not taken into account. In this paper, the actual orientation of the magnetic fields from 0 to 90 degrees is considered. The critical currents of the two kinds of high field nested magnets designed using the proposed method are calculated. The finite element method is used to calculate the distribution of the magnetic fields and the evolution strategy is used to find the critical current which maximizes the central magnetic field.