DOI QR코드

DOI QR Code

A Study on Decision of Cut Rock Slope Angle Applied Shear Strength of Continuum Rock Mass Induced from Hoek-Brown Failure Criterion

Hoek-Brown 파괴기준에서 유도된 연속체암반의 전단강도를 적용한 깎기 암반사면 경사 결정 연구

  • Received : 2019.02.11
  • Accepted : 2019.04.09
  • Published : 2019.05.01

Abstract

There are many cuts or natural rock slopes that remain stable for a long time in the natural environment with steep slopes ($65^{\circ}$ to $85^{\circ}$). In terms of design practice, the rock mass consisting of similar rock condition and geological structures is defined as a good continuum rock slope, and during the process of decision making angle of this rock slope, it will be important to establish the geotechnical properties estimating method of the continuum rock on the process of stability analysis in the early stages of design and construction. In this study, the stability analysis of a good continuum rock slope that can be designed as a steep slope proposed a practical method of estimating the shear strength by induced from the Hoek-Brown failure criterion, and in addition, the design applicability was evaluated through the stability analysis of steep rock slope. The existing method of estimating the shear strength was inadequate for practical use in the design, as the equivalent M-C shear strength corresponding to the H-B envelope changes sensitively, even with small variations in confining stress. To compensate for this problem, it was proposed to estimate equivalent M-C shear strength by iso-angle division method. To verify the design applicability of the iso-angle division method, the results of the safety factor and the displacement according to the change in angle of the cut slope constructed at the existing working design site were reviewed. The safety factor is FS=16~59 on the 1:0.5 slope, FS=12~52 on the 1:0.3 slope, most of which show a 10~12 percent reduction. Displacement is 0.126 to 0.975 mm on the 1:0.5 slope, 0.152 to 1.158 mm on the 1:0.3 slope, and represents an increase of 10 to 15%. This is a slightly change in normal proportion and is in good condition in terms of stability. In terms practical the working design, it was confirmed that applying the shear strength estimated by Iso-angle division method derived from the H-B failure criterion as a universal shear strength for a good continuum rock mass slope was also able to produce stable and economic results. The procedure for stability analysis using LEM (Limit Equilibrium Analysis Method) and FEM (Finite Element Analysis Method) will also be practical in the rock slope where is not distributed fault. The study was conducted by selecting the slope of study area as a good rock condition, establishing a verification for which it can be applied universal to a various rock conditions will be a research subject later on.

급경사($65^{\circ}{\sim}85^{\circ}$)로 자연환경에서 장기간 안정한 상태로 유지되고 있는 깎기 또는 자연 상태의 암반사면이 다수 존재한다. 설계 실무측면에서 이와 유사한 암반상태 및 지질구조로 이루어진 지반을 양호한 연속체 암반사면으로 정의하고 있으며, 이 암반사면의 경사 결정 과정 중에 설계 및 시공 초기 단계의 안정해석 절차 단계에서 연속체 암반의 지반특성 평가방법을 수립하는 것이 중요하게 될 것이다. 이 연구에서는 급경사로 설계 가능한 양호한 연속체 암반사면의 안정해석 과정에서 지반정수 적용에 필요한 강도정수를 Hoek-Brown 파괴기준을 활용하여 실무적으로 산정하는 방안을 제안하고 이와 함께 급경사 암반사면의 안정해석을 통해 설계 적용성을 평가하였다. 기존 강도정수 산정방법은 작은 구속응력 변화에도 H-B파괴 포락선에 상응하는 등가 M-C강도정수가 민감하게 변화하므로 설계에서 실무적으로 활용하기가 부적합하였다. 이 문제점을 보완하기 위해 등각분할법으로 등가 M-C강도정수를 산정하는 방안을 제시하였다. 등각분할법의 설계 적용성을 확인하기 위해 기존 실시설계 현장에서 조성된 깎기 사면의 경사 변화에 따른 안전율 및 변위 결과를 검토하였다. 안전율은 1:0.5 사면에서 Fs=16~59이고, 1:0.3 사면에서 Fs=12~52이며, 대부분 10~12%의 감소를 보인다. 변위는 1:0.5 사면에서 0.126~0.975mm이고, 1:0.3 사면에서 0.152~1.158mm이며, 10~15%의 증가를 나타낸다. 이는 정규 비례의 미미한 변화이며, 안정성 측면에서는 양호한 상태이다. 설계 실무측면에서, H-B파괴기준에서 유도된 등각분할법으로 산정한 강도정수를 연구대상 암반사면과 유사한 양호한 암반에 대해 범용적인 강도정수로 적용하여도 안정적이고 경제적인 결과를 도출할 수 있다는 것을 확인하였다. 암반사면에 영향을 미치는 단층이 분포하지 않는 지반에서는 한계평형해석(LEM)과 유한요소해석(FEM)으로 안정해석하는 절차도 실무적으로 무난한 것으로 검토되었다. 연구대상 사면을 양호한 상태의 암반조건으로 선정하여 연구를 수행하였으나 좀 더 다양한 암반조건(터널 포함)에 보편적으로 적용할 수 있는지에 대한 검증 작업은 추후 연구과제가 될 것이다.

Keywords

HJHGC7_2019_v20n5_13_f0001.png 이미지

Fig. 1. Typical section of good continuum rock mass slope (a,b,c)

HJHGC7_2019_v20n5_13_f0002.png 이미지

Fig. 2. Estimating method of shear strength in continuum rock slope

HJHGC7_2019_v20n5_13_f0003.png 이미지

Fig. 3. Performance frequency of slope stability analysis

HJHGC7_2019_v20n5_13_f0004.png 이미지

Fig. 4. Safety factor of limit equilibrium analysis and strength reduction method

HJHGC7_2019_v20n5_13_f0005.png 이미지

Fig. 5. LEM result in 1:0.3 and 1:0.5 cut-slope angle of granite

HJHGC7_2019_v20n5_13_f0006.png 이미지

Fig. 6. FEM result in 1:0.3 and 1:0.5 cut-slope angle of granite

HJHGC7_2019_v20n5_13_f0007.png 이미지

Fig. 7. LEM result in 1:0.3 and 1:0.5 cut-slope angle of andesite

HJHGC7_2019_v20n5_13_f0008.png 이미지

Fig. 8. FEM result in 1:0.3 and 1:0.5 cut-slope angle of andesite

HJHGC7_2019_v20n5_13_f0009.png 이미지

Fig. 9. LEM result in 1:0.3 and 1:0.5 cut-slope angle of gneiss

HJHGC7_2019_v20n5_13_f0010.png 이미지

Fig. 10. FEM result in 1:0.3 and 1:0.5 cut-slope angle of gneiss

HJHGC7_2019_v20n5_13_f0011.png 이미지

Fig. 11. LEM result in 1:0.3 and 1:0.5 cut-slope angle of sandstone

HJHGC7_2019_v20n5_13_f0012.png 이미지

Fig. 12. FEM result in 1:0.3 and 1:0.5 cut-slope angle of sandstone

HJHGC7_2019_v20n5_13_f0013.png 이미지

Fig. 13. LEM result in 1:0.3 and 1:0.5 cut-slope angle of interbeded layer

HJHGC7_2019_v20n5_13_f0014.png 이미지

Fig. 14. FEM result in 1:0.3 and 1:0.5 cut-slope angle of interbeded layer

Table 1. Rock properties of granite

HJHGC7_2019_v20n5_13_t0001.png 이미지

Table 2. Rock properties of andesite

HJHGC7_2019_v20n5_13_t0002.png 이미지

Table 3. Rock properties of gneiss

HJHGC7_2019_v20n5_13_t0003.png 이미지

Table 4. Rock properties of sandstone (massive)

HJHGC7_2019_v20n5_13_t0004.png 이미지

Table 5. Rock properties of sandstone and siltstone interbeded layer

HJHGC7_2019_v20n5_13_t0005.png 이미지

Table 6. Rock properties of iso-angle division at working design

HJHGC7_2019_v20n5_13_t0006.png 이미지

Table 7. Stability analysis result in 1:0.5 and 1:0.3 cut-slope angle

HJHGC7_2019_v20n5_13_t0007.png 이미지

References

  1. Barton, N. (1995), The influence of joint properties in modelling jointed rock masses, Keynote Lecture. In : 8th Cong. ISRM.
  2. Bieniawski, Z. T. (1993), Classification of rock masses for engineering: The RMR system and future trends, In Comprehensive rock engineering, pp. 553-573.
  3. Brown, E. T. (1981), Rock characterization, testing and monitoring-ISRM suggested methods, pp. 171-183.
  4. Chun, B. S., Lee, J. M., Choi, H. S. and Seo, D. D. (2003), Numerical study on the stability analysis of rock slope considering non-linear characteristics of Hoek-Brown failure criterion, Journal of the Korean geo-environmental society, Vol. 4, Issue. 2, pp. 77-91 (In Korean).
  5. Hoek, E. and Bray, J. W. (1981), Rock slope engineering, The institution of mining and metallurgy, London, pp. 83-117.
  6. Hoek, E. (1994), Strength of rock and rock masses, ISRM news journal 2(2), pp. 4-16.
  7. Hoek, E. and Brown, E. T. (1980), Empirical strength criterion for rock masses, J. Geotech. Eng. Div., pp. 1013-1035.
  8. Hoek, E., Carranza-Torres C. and Corkum B. (2002), Hoek-Brown failure criterion-2002 edition, Proc. NARMS-TAC Conference, pp. 267-273.
  9. Joh, J. H. (2004), Numerical study on rock slope stability analysis by non-linear Hoek-Brown failure criterion, Master's thesis, Hanyang University (In Korean).
  10. Jung, J. H. (2012), A Study on stability of rock slope by shear strength, Master's thesis, Deajeon University (In Korean).
  11. Hoek, E. (2012), Blast Damage Factor D, Technical note for RocNews, pp. 1-7.
  12. Marinos, V., Marinos, P. and Hoek, E. (2005), The geological strength index : applications and limitations, Bull. Eng. Geol. Environ., pp. 55-65.
  13. Palmstrom, A. (2005), Measurements of correlations between block size and rock quality designation (RQD), Tunnels and Underground Space Technology, pp. 362-377.
  14. Yang, K. H. (2007), A comparative study on stability analysis of rock-cut slope using shear strength reduction method, Master's thesis, Sungkyunkwan University (In Korean).