• 제목/요약/키워드: appearance based face recognition

검색결과 45건 처리시간 0.02초

SVM과 PCA를 이용한 국부 외형 기반 얼굴 인식 방법 (Local Appearance-based Face Recognition Using SVM and PCA)

  • 박승환;곽노준
    • 대한전자공학회논문지SP
    • /
    • 제47권3호
    • /
    • pp.54-60
    • /
    • 2010
  • 얼굴 인식 방법 중에 한 얼굴 영상을 분할하여 분할한 각 부분마다 통계적 방법을 적용해 특징추출을 수행한 다음 각 부분마다 분류를 수행하고 이러한 분류결과를 모아서 voting등의 방법으로 얼굴 인식을 수행 하는 방법을 국부 외형 기반 방법(local appearance-based method) 이라고 한다. 기존에 제안된 국부 외형 기반 얼굴 인식은 얼굴 영상을 일정한 크기로 단순분할하고, 그 부분들을 모두 인식에 사용한다. 본고에서는 인식에 상대적으로 중요한 부분만을 사용하여 얼굴 인식을 수행하는 새로운 국부 외형 기반 얼굴 인식 방법을 제안한다. 본고에서는 단순 분할 방법 대신에 눈, 코, 입 등 인물 간의 차이가 잘 나타나는 얼굴 부분들을 support vector machine (SVM) 을 이용하여 검출한 후, 검출한 각 부분에 주성분 분석 (PCA) 을 적용하고 이를 통합하여 얼굴 인식을 수행하였다. 실험을 통해 제안한 방법과 기존 방법의 성능을 비교한 결과, 제안한 방법이 기존의 국부 외형 기반 방법의 장점을 지니는 동시에 성능을 개선시킴을 확인하였다.

Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis

  • Boussaad, Leila;Benmohammed, Mohamed;Benzid, Redha
    • Journal of Information Processing Systems
    • /
    • 제12권3호
    • /
    • pp.392-409
    • /
    • 2016
  • The aim of this paper is to examine the effectiveness of combining three popular tools used in pattern recognition, which are the Active Appearance Model (AAM), the two-dimensional discrete cosine transform (2D-DCT), and Kernel Fisher Analysis (KFA), for face recognition across age variations. For this purpose, we first used AAM to generate an AAM-based face representation; then, we applied 2D-DCT to get the descriptor of the image; and finally, we used a multiclass KFA for dimension reduction. Classification was made through a K-nearest neighbor classifier, based on Euclidean distance. Our experimental results on face images, which were obtained from the publicly available FG-NET face database, showed that the proposed descriptor worked satisfactorily for both face identification and verification across age progression.

2차원 PCA 얼굴 고유 식별 특성 부분공간 모델 기반 강인한 얼굴 인식 (Robust Face Recognition based on 2D PCA Face Distinctive Identity Feature Subspace Model)

  • 설태인;정선태;김상훈;장언동;조성원
    • 대한전자공학회논문지SP
    • /
    • 제47권1호
    • /
    • pp.35-43
    • /
    • 2010
  • 고유얼굴 기반 얼굴 인식 방법과 같은 얼굴 형태 기반 얼굴 인식 방법에 사용되는 1차원 PCA는 고차원의 얼굴 형태 데이터 벡터들의 처리로 인하여 부정확한 얼굴 표현과 과도한 계산량을 초래할 수 있다. 이에 개선 방안의 하나로 2차원 PCA 기반 얼굴 인식 방법이 개발되었다. 그러나 단순한 2차원 PCA 적용으로 얻어진 얼굴 표현 모델에는 얼굴 공통 특성 성분과 개인 식별 특성 성분이 모두 포함된다. 얼굴 공통 특성 성분은 오히려 개인 식별 능력을 방해할 수가 있고 또한 인식 처리 시간의 증가를 초래한다. 본 논문에서는 2차원 PCA 적용으로 얻어진 얼굴 특성 공간에서 얼굴 공통 특성 영향이 분리된 얼굴 고유 식별 특성 부분공간 모델을 개발하고 개발된 모델에 기반한 새로운 강인한 얼굴 인식 방법을 제안한다. 제안한 얼굴 고유식별 특성 부분공간 모델 기반 얼굴 인식 방법은 얼굴 고유 식별 특성에만 주로 의존하기 때문에 기존 1차원 PCA 및 2차원 PCA 기반 얼굴 인식 방법보다 얼굴 인식 성능 및 인식 속도에 대해서 더 우수한 성능을 보인다. 이는 다양한 조명 조건하에 다양한 얼굴 자세를 갖는 얼굴 이미지들로 구성된 Yale A 및 IMM 얼굴 데이터베이스를 이용한 실험을 통해 확인하였다.

Comparison of Computer and Human Face Recognition According to Facial Components

  • Nam, Hyun-Ha;Kang, Byung-Jun;Park, Kang-Ryoung
    • 한국멀티미디어학회논문지
    • /
    • 제15권1호
    • /
    • pp.40-50
    • /
    • 2012
  • Face recognition is a biometric technology used to identify individuals based on facial feature information. Previous studies of face recognition used features including the eye, mouth and nose; however, there have been few studies on the effects of using other facial components, such as the eyebrows and chin, on recognition performance. We measured the recognition accuracy affected by these facial components, and compared the differences between computer-based and human-based facial recognition methods. This research is novel in the following four ways compared to previous works. First, we measured the effect of components such as the eyebrows and chin. And the accuracy of computer-based face recognition was compared to human-based face recognition according to facial components. Second, for computer-based recognition, facial components were automatically detected using the Adaboost algorithm and active appearance model (AAM), and user authentication was achieved with the face recognition algorithm based on principal component analysis (PCA). Third, we experimentally proved that the number of facial features (when including eyebrows, eye, nose, mouth, and chin) had a greater impact on the accuracy of human-based face recognition, but consistent inclusion of some feature such as chin area had more influence on the accuracy of computer-based face recognition because a computer uses the pixel values of facial images in classifying faces. Fourth, we experimentally proved that the eyebrow feature enhanced the accuracy of computer-based face recognition. However, the problem of occlusion by hair should be solved in order to use the eyebrow feature for face recognition.

얼굴인식을 위한 3D Active Appearance Model (3D Active Appearance Model for Face Recognition)

  • 조경식;김용국
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.1006-1011
    • /
    • 2007
  • Active Appearance Models은 객체의 모델링에 널리 사용되며, 특히 얼굴 모델은 얼굴 추적, 포즈 인식, 표정 인식, 그리고 얼굴 인식에 널리 사용되고 있다. 최초의 AAM은 Shape과 Appearance가 하나의 계수에 의해서 만들어 지는 Combined AAM이였고, 이후 Shape과 Appearance의 계수가 분리된 Independent AAM과 3D를 표현할 수 있는 Combined 2D+3D AAM이 개발 되었다. 비록 Combined 2D+3D AAM이 3D를 표현 할 수 있을지라도 이들은 공통적으로 2D 영상을 사용하여 모델을 생산한다. 본 논문에서 우리는 stereo-camera based 3D face capturing device를 통해 획득한 3D 데이터를 기반으로 하는 3D AAM을 제안한다. 우리의 3D AAM은 3D정보를 이용해 모델을 생산하므로 기존의 AAM보다 정확한 3D표현이 가능하고 Alignment Algorithm으로 Inverse Compositional Image Alignment(ICIA)를 사용하여 빠르게 Model Instance를 생산할 수 있다. 우리는 3D AAM을 평가하기 위해 stereo-camera based 3D face capturing device로 촬영해 수집한 한국인 얼굴 데이터베이스[9]로 얼굴인식을 수행하였다.

  • PDF

Active Shape Model을 이용한 외형기반 얼굴표정인식에 관한 연구 (A Study on Appearance-Based Facial Expression Recognition Using Active Shape Model)

  • 김동주;신정훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권1호
    • /
    • pp.43-50
    • /
    • 2016
  • 본 논문에서는 ASM(Active Shape Model) 특징점(Landmark)을 이용하여 정밀한 얼굴영역을 획득하고, 외형기반 접근법으로 표정을 인식하는 방법에 대하여 제안한다. 외형기반 표정인식은 EHMM(Embedded Hidden Markov Model) 및 이진패턴 히스토그램 특징과 SVM(Support Vector Machine)을 사용하는 알고리즘으로 구성되며, 제안 방법의 성능평가는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 이용하여 수행되었다. 더불어, 성능비교는 기존의 눈 거리 기반의 얼굴 정규화 방법과 비교를 통하여 수행되었고, 또한 ASM 전체 특징점 및 변형된 특징을 SVM으로 인식하는 기하학적 표정인식 방법론과 성능비교를 수행하였다. 실험 결과, 제안 방법은 거리기반 얼굴정규화 영상을 사용한 방법보다 CK 데이터베이스 및 JAFFE 데이터베이스 경우, 최대 6.39%와 7.98%의 성능향상을 보였다. 또한, 제안 방법은 기하학적 특징점을 사용한 방법보다 높은 인식 성능을 보였으며, 이로부터 제안하는 표정인식 방법의 효용성을 확인하였다.

통계적 형상 기반의 얼굴인식을 위한 가변얼굴템플릿 생성방법 (A Method of Generating Changeable Face Template for Statistical Appearance-Based Face Recognition)

  • 이철한;정민이;김종선;최정윤;김재희
    • 대한전자공학회논문지SP
    • /
    • 제44권2호
    • /
    • pp.27-36
    • /
    • 2007
  • 가변생체인식(Changeable Biometrics)이란 생체정보의 도난이나 도용 시 개인의 프라이버시를 보호하기 위해 원 생체정보를 사용하지 않고, 생체정보를 변환하여 변환된 생체정보로 개인을 인증하는 방법이다. 본 논문은 통계적 형상 기반의 얼굴인식(Statistical appearance based face recognition)에 적용될 수 있는 가변얼굴템플릿 생성 방법에 대해 제안한다. 상이한 두 개의 통계적 형상 기반의 얼굴특징 방법을 이용하여 두 개의 얼굴특징벡터를 추출하고, 추출된 두 개의 얼굴특징벡터를 정규화 후 각 특징벡터들의 요소의 순서를 재배열 시킨다. 가변얼굴템플릿은 정규화 되고 순서가 재배열된 특징벡터들의 가중 합으로 생성된다. 두 개의 서로 다른 얼굴특징벡터의 가중 합으로 하나의 가변얼굴템플릿을 생성하므로, 가중 합의 방법과 생성된 가변얼굴템플릿을 알더라도 원 얼굴 특징벡터를 복원할 수 없다. 또한, 생성된 가변얼굴템플릿의 도난 시 새로운 가변얼굴템플릿의 생성은 각 벡터의 순서를 재배열시키는 규칙을 변경함으로써 가능하다. 그러므로 제안한 가변얼굴템플릿을 이용하여 개인 인증 시, 개인의 얼굴템플릿을 도난당하더라도 원 얼굴특징정보를 복원 할 수 없고 또한 새로운 가변얼굴템플릿으로 대체 할 수 있어 생체정보의 도난 시 발생할 수 있는 프라이버시 침해의 문제를 해결 할 수 있다. 제안한 방법은 AR-face DB를 이용하여 성능과 보안성에 대해 평가하였다.

얼굴 인식 성능 향상을 위한 재분류 방법 (Re-classifying Method for Face Recognition)

  • 배경률
    • 지능정보연구
    • /
    • 제10권3호
    • /
    • pp.105-114
    • /
    • 2004
  • 최근 생체인식에 대한 관심이 증가하면서 출입 통제나 사용자 인증과 같은 보안 분야에 적용이 활발히 진행되고 있다. 특히 얼굴인식은 생체인식 기술 중 사용자 편의성과 접촉 거부감이 적어 활용성이 증대되고 있으나 타 인식기술에 비해 인식 결과의 정확성과 재시도율(Re-attempt Rate)에 취약한 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위해 데이터 분류 방법(Data Classification Algorithm)으로 인식 결과를 재분류(Re-Classification)하는 접근법에 대해서 제안하고자 한다. 본 실험을 위해서 대표적인 형상 기반(Appearance-based) 알고리즘인 PCA를 사용하였고, 200명(총 얼굴 영상 200장)을 대상으로 제안한 재분류 접근법을 적용한 결과 재인식의 경우 성능이 향상되었음을 확인하였다.

  • PDF

임베디드 리눅스 기반의 눈 영역 비교법을 이용한 얼굴인식 (Face Recognition System Based on the Embedded LINUX)

  • 배은대;김석민;남부희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.120-121
    • /
    • 2006
  • In this paper, We have designed a face recognition system based on the embedded Linux. This paper has an aim in embedded system to recognize the face more exactly. At first, the contrast of the face image is adjusted with lightening compensation method, the skin and lip color is founded based on YCbCr values from the compensated image. To take advantage of the method based on feature and appearance, these methods are applied to the eyes which has the most highly recognition rate of all the part of the human face. For eyes detecting, which is the most important component of the face recognition, we calculate the horizontal gradient of the face image and the maximum value. This part of the face is resized for fitting the eye image. The image, which is resized for fit to the eye image stored to be compared, is extracted to be the feature vectors using the continuous wavelet transform and these vectors are decided to be whether the same person or not with PNN, to miminize the error rate, the accuracy is analyzed due to the rotation or movement of the face. Also last part of this paper we represent many cases to prove the algorithm contains the feature vector extraction and accuracy of the comparison method.

  • PDF

선형모델을 이용한 방향성 조명하의 얼굴영상 정규화 (Normalization of Face Images Subject to Directional Illumination using Linear Model)

  • 고재필;김은주;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권1호
    • /
    • pp.54-60
    • /
    • 2004
  • 얼굴인식은 외관기반(appearance-based) 매칭기법으로 풀어야 할 문제 중의 하나이다. 그러나, 얼굴영상의 외관은 조명 변화에 매우 민감하다. 얼굴인식 성능을 향상시키기 위해서는 다양한 조명 아래에서 다양한 학습 데이타를 수집해야 하나, 실제로는 데이타 수집이 용이하지 않다. 따라서, 성능향상을 위해서 다양한 데이타를 학습시키는 것 보다 다양한 조건의 데이타를 정규화 하는 기법에 주목하는 것이 바람직하다. 본 논문에서는 방향성 조명 아래에서 취득한 얼굴영상을 정규화 할 수 있는 간단한 방법을 제안한다. 조명 문제는 얼굴인식 시스템에서 오류를 일으키는 가장 중요한 요인중 하나이다. 제안하는 방법을 ICR(illumination Compensation based on Multiple Linear Regression)이라 명명하였다. 본 방법에서는 다중회귀분석 모델을 사용하여 얼굴영상의 화소 밝기 갈 분포에 가장 잘 맞는 평면을 찾은 후 이 평면을 이용하여 얼굴영상을 정규화 한다. 제안하는 방법의 장점은 간단하고 실용적이며, 얼굴영상의 밝기 값 분포에 대한 평면 근사가 선형모델에 의해 수학적으로 정의된다는 점이다. 얼굴인식에서 제안하는 방법의 성능 향상을 보여주기 위해 공개 및 자체 구축 데이타 베이스에 대한 실험 결과를 제시한다. 실험 결과 두드러진 얼굴인식 성능 향상을 보여주었다.