DOI QR코드

DOI QR Code

A Study on Appearance-Based Facial Expression Recognition Using Active Shape Model

Active Shape Model을 이용한 외형기반 얼굴표정인식에 관한 연구

  • 김동주 (동서대학교 컴퓨터공학부) ;
  • 신정훈 (대구가톨릭대학교 IT공학부)
  • Received : 2015.04.29
  • Accepted : 2015.09.09
  • Published : 2016.01.31

Abstract

This paper introduces an appearance-based facial expression recognition method using ASM landmarks which is used to acquire a detailed face region. In particular, EHMM-based algorithm and SVM classifier with histogram feature are employed to appearance-based facial expression recognition, and performance evaluation of proposed method was performed with CK and JAFFE facial expression database. In addition, performance comparison was achieved through comparison with distance-based face normalization method and a geometric feature-based facial expression approach which employed geometrical features of ASM landmarks and SVM algorithm. As a result, the proposed method using ASM-based face normalization showed performance improvements of 6.39% and 7.98% compared to previous distance-based face normalization method for CK database and JAFFE database, respectively. Also, the proposed method showed higher performance compared to geometric feature-based facial expression approach, and we confirmed an effectiveness of proposed method.

본 논문에서는 ASM(Active Shape Model) 특징점(Landmark)을 이용하여 정밀한 얼굴영역을 획득하고, 외형기반 접근법으로 표정을 인식하는 방법에 대하여 제안한다. 외형기반 표정인식은 EHMM(Embedded Hidden Markov Model) 및 이진패턴 히스토그램 특징과 SVM(Support Vector Machine)을 사용하는 알고리즘으로 구성되며, 제안 방법의 성능평가는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 이용하여 수행되었다. 더불어, 성능비교는 기존의 눈 거리 기반의 얼굴 정규화 방법과 비교를 통하여 수행되었고, 또한 ASM 전체 특징점 및 변형된 특징을 SVM으로 인식하는 기하학적 표정인식 방법론과 성능비교를 수행하였다. 실험 결과, 제안 방법은 거리기반 얼굴정규화 영상을 사용한 방법보다 CK 데이터베이스 및 JAFFE 데이터베이스 경우, 최대 6.39%와 7.98%의 성능향상을 보였다. 또한, 제안 방법은 기하학적 특징점을 사용한 방법보다 높은 인식 성능을 보였으며, 이로부터 제안하는 표정인식 방법의 효용성을 확인하였다.

Keywords

References

  1. T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham, "Active shape models - their training and application," Computer Vision and Image Understanding, Vol.61, pp.38-59, 1995. https://doi.org/10.1006/cviu.1995.1004
  2. T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance models," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.23, No.6, pp.681-685, 2001. https://doi.org/10.1109/34.927467
  3. T. S. Lee, "Image representation using 2D Gabor wavelets," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.18, No.10, pp.959-971, 1996. https://doi.org/10.1109/34.541406
  4. Hyunsup Yoon, Youngjoon Han, and Hernsoo Hahn, "Real-time Recognition System of Facial Expressions Using Principal Component of Gabor-wavelet Features," Journal of The Korean Institute of Intelligent Systems, Vol.19, No.6, pp. 821-827, 2009. https://doi.org/10.5391/JKIIS.2009.19.6.821
  5. C. Shan, S. Gong, and P. W. McOwan, "Facial Expression Recognition based on Local Binary Patterns: A Comprehensive Study," Image and Vision Computing, Vol.27, No.6, pp. 803-816, 2009. https://doi.org/10.1016/j.imavis.2008.08.005
  6. T. Jabid, M. H. Kabir, and O. Chae, "Robust Facial Expression Recognition based on Local Directional Pattern," ETRI Journal, Vol.32, No.5, pp.784-794, 2010. https://doi.org/10.4218/etrij.10.1510.0132
  7. Dong-Ju Kim, Sang-Heon Lee, and Myoung-Kyu Sohn, "Feature Extraction Method of 2D-DCT for Facial Expression Recognition," KIPS Transactions on Software and Data Engineering, Vol.3, No.3, pp.135-138, 2014. https://doi.org/10.3745/KTSDE.2014.3.3.135
  8. J. Cao and C. Tong, "Facial expression recognition based on LBP-EHMM," 2008 Congress on Image and Signal Processing, pp.371-375, 2008.
  9. X. Li, Q. Ruan, and Y. Ming, "A Remarkable Standard for Estimating he Performance of 3D Facial Expression Features," Neurocomputing, Vol.82, pp.99-108, 2012. https://doi.org/10.1016/j.neucom.2011.10.029
  10. P. Viola and M. J. Jones, "Robust real-time object detection," Technical Report Series, Compaq Cambridge research Laboratory, CRL 2001/01, 2001.
  11. S. Milborrow, J. Morkel, and F. Nicolls, "The MUCT Landmarked Face Database," in Proc. Pattern Recognition Association of South Africa, 2010.
  12. T. Kanade, J. Cohn, and Y. Tian, "Comprehensive Database for Facial Expression Analysis," IEEE International Conference Automatic Face Gesture Recognition, pp.46-53, 2000.
  13. M. J. Lyons, J. Budynek, and S. Akamatsu, "Automatic Classification of Single Facial images," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.21, No.12, pp.357-1362, 1999.