Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.3
/
pp.54-60
/
2010
The local appearance-based method is one of the face recognition methods that divides face image into small areas and extracts features from each area of face image using statistical analysis. It collects classification results of each area and decides identity of a face image using a voting scheme by integrating classification results of each area of a face image. The conventional local appearance-based method divides face images into small pieces and uses all the pieces in recognition process. In this paper, we propose a local appearance-based method that makes use of only the relatively important facial components. The proposed method detects the facial components such as eyes, nose and mouth that differs much from person to person. In doing so, the proposed method detects exact locations of facial components using support vector machines (SVM). Based on the detected facial components, a number of small images that contain the facial parts are constructed. Then it extracts features from each facial component image using principal components analysis (PCA). We compared the performance of the proposed method to those of the conventional methods. The results show that the proposed method outperforms the conventional local appearance-based method while preserving the advantages of the conventional local appearance-based method.
The aim of this paper is to examine the effectiveness of combining three popular tools used in pattern recognition, which are the Active Appearance Model (AAM), the two-dimensional discrete cosine transform (2D-DCT), and Kernel Fisher Analysis (KFA), for face recognition across age variations. For this purpose, we first used AAM to generate an AAM-based face representation; then, we applied 2D-DCT to get the descriptor of the image; and finally, we used a multiclass KFA for dimension reduction. Classification was made through a K-nearest neighbor classifier, based on Euclidean distance. Our experimental results on face images, which were obtained from the publicly available FG-NET face database, showed that the proposed descriptor worked satisfactorily for both face identification and verification across age progression.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.1
/
pp.35-43
/
2010
1D PCA utilized in the face appearance-based face recognition methods such as eigenface-based face recognition method may lead to less face representative power and more computational cost due to the resulting 1D face appearance data vector of high dimensionality. To resolve such problems of 1D PCA, 2D PCA-based face recognition methods had been developed. However, the face representation model obtained by direct application of 2D PCA to a face image set includes both face common features and face distinctive identity features. Face common features not only prevent face recognizability but also cause more computational cost. In this paper, we first develope a model of a face distinctive identity feature subspace separated from the effects of face common features in the face feature space obtained by application of 2D PCA analysis. Then, a novel robust face recognition based on the face distinctive identity feature subspace model is proposed. The proposed face recognition method based on the face distinctive identity feature subspace shows better performance than the conventional PCA-based methods (1D PCA-based one and 2D PCA-based one) with respect to recognition rate and processing time since it depends only on the face distinctive identity features. This is verified through various experiments using Yale A and IMM face database consisting of face images with various face poses under various illumination conditions.
Face recognition is a biometric technology used to identify individuals based on facial feature information. Previous studies of face recognition used features including the eye, mouth and nose; however, there have been few studies on the effects of using other facial components, such as the eyebrows and chin, on recognition performance. We measured the recognition accuracy affected by these facial components, and compared the differences between computer-based and human-based facial recognition methods. This research is novel in the following four ways compared to previous works. First, we measured the effect of components such as the eyebrows and chin. And the accuracy of computer-based face recognition was compared to human-based face recognition according to facial components. Second, for computer-based recognition, facial components were automatically detected using the Adaboost algorithm and active appearance model (AAM), and user authentication was achieved with the face recognition algorithm based on principal component analysis (PCA). Third, we experimentally proved that the number of facial features (when including eyebrows, eye, nose, mouth, and chin) had a greater impact on the accuracy of human-based face recognition, but consistent inclusion of some feature such as chin area had more influence on the accuracy of computer-based face recognition because a computer uses the pixel values of facial images in classifying faces. Fourth, we experimentally proved that the eyebrow feature enhanced the accuracy of computer-based face recognition. However, the problem of occlusion by hair should be solved in order to use the eyebrow feature for face recognition.
Active Appearance Models은 객체의 모델링에 널리 사용되며, 특히 얼굴 모델은 얼굴 추적, 포즈 인식, 표정 인식, 그리고 얼굴 인식에 널리 사용되고 있다. 최초의 AAM은 Shape과 Appearance가 하나의 계수에 의해서 만들어 지는 Combined AAM이였고, 이후 Shape과 Appearance의 계수가 분리된 Independent AAM과 3D를 표현할 수 있는 Combined 2D+3D AAM이 개발 되었다. 비록 Combined 2D+3D AAM이 3D를 표현 할 수 있을지라도 이들은 공통적으로 2D 영상을 사용하여 모델을 생산한다. 본 논문에서 우리는 stereo-camera based 3D face capturing device를 통해 획득한 3D 데이터를 기반으로 하는 3D AAM을 제안한다. 우리의 3D AAM은 3D정보를 이용해 모델을 생산하므로 기존의 AAM보다 정확한 3D표현이 가능하고 Alignment Algorithm으로 Inverse Compositional Image Alignment(ICIA)를 사용하여 빠르게 Model Instance를 생산할 수 있다. 우리는 3D AAM을 평가하기 위해 stereo-camera based 3D face capturing device로 촬영해 수집한 한국인 얼굴 데이터베이스[9]로 얼굴인식을 수행하였다.
KIPS Transactions on Software and Data Engineering
/
v.5
no.1
/
pp.43-50
/
2016
This paper introduces an appearance-based facial expression recognition method using ASM landmarks which is used to acquire a detailed face region. In particular, EHMM-based algorithm and SVM classifier with histogram feature are employed to appearance-based facial expression recognition, and performance evaluation of proposed method was performed with CK and JAFFE facial expression database. In addition, performance comparison was achieved through comparison with distance-based face normalization method and a geometric feature-based facial expression approach which employed geometrical features of ASM landmarks and SVM algorithm. As a result, the proposed method using ASM-based face normalization showed performance improvements of 6.39% and 7.98% compared to previous distance-based face normalization method for CK database and JAFFE database, respectively. Also, the proposed method showed higher performance compared to geometric feature-based facial expression approach, and we confirmed an effectiveness of proposed method.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.44
no.2
s.314
/
pp.27-36
/
2007
Changeable biometrics identify a person using transformed biometric data instead of original biometric data in order to enhance privacy and security in biometrics when biometric data is compromised. In this paper, a novel scheme which generates changeable face templates for statistical appearance-based face recognition is proposed. Two different original face feature vectors are extracted from two different appearance-based approaches, respectively, each original feature vector is normalized, and its elements are re-ordered. Finally a changeable face template is generated by weighted addition between two normalized and scrambled feature vectors. Since the two feature vectors are combined into one by a two to one mapping, the original two feature vectors are not easily recovered from the changeable face template even if the combining rule is known. Also, when we need to make new changeable face template for a person, we change the re-ordering rule for the person and make a new feature vector for the person. Therefore, the security and privacy in biometric system can be enhanced by using the proposed changeable face templates. In our experiments, we analyze the proposed method with respect to performance and security using an AR-face database.
In the past year, the increasing concern about the biometric recognition makes the great activities on the security fields, such as the entrance control or user authentication. In particular, although the features of face recognition, such as user friendly and non-contact made it to be used widely, unhappily it has some disadvantages of low accuracy or low Re-attempts Rates. For this reason, I suggest the new approach to re-classify the classified data of recognition result data to solve the problems. For this study, I will use the typical appearance-based, PCA(Principal Component Analysis) algorithm and verify the performance improvement by adopting the re-classification approach using 200 peoples (10 pictures per one person).
In this paper, We have designed a face recognition system based on the embedded Linux. This paper has an aim in embedded system to recognize the face more exactly. At first, the contrast of the face image is adjusted with lightening compensation method, the skin and lip color is founded based on YCbCr values from the compensated image. To take advantage of the method based on feature and appearance, these methods are applied to the eyes which has the most highly recognition rate of all the part of the human face. For eyes detecting, which is the most important component of the face recognition, we calculate the horizontal gradient of the face image and the maximum value. This part of the face is resized for fitting the eye image. The image, which is resized for fit to the eye image stored to be compared, is extracted to be the feature vectors using the continuous wavelet transform and these vectors are decided to be whether the same person or not with PNN, to miminize the error rate, the accuracy is analyzed due to the rotation or movement of the face. Also last part of this paper we represent many cases to prove the algorithm contains the feature vector extraction and accuracy of the comparison method.
Face recognition is one of the problems to be solved by appearance based matching technique. However, the appearance of face image is very sensitive to variation in illumination. One of the easiest ways for better performance is to collect more training samples acquired under variable lightings but it is not practical in real world. ]:n object recognition, it is desirable to focus on feature extraction or normalization technique rather than focus on classifier. This paper presents a simple approach to normalization of faces subject to directional illumination. This is one of the significant issues that cause error in the face recognition process. The proposed method, ICR(illumination Compensation based on Multiple Linear Regression), is to find the plane that best fits the intensity distribution of the face image using the multiple linear regression, then use this plane to normalize the face image. The advantages of our method are simple and practical. The planar approximation of a face image is mathematically defined by the simple linear model. We provide experimental results to demonstrate the performance of the proposed ICR method on public face databases and our database. The experimental results show a significant improvement of the recognition accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.