• Title/Summary/Keyword: anti-corrosion evaluation

Search Result 54, Processing Time 0.029 seconds

A Experimental Study on the Evaluation of Anti-corrosion Performance of rebar in concrete added chloride and inhibitor using EIS method (EIS를 이용한 염화물 및 방청제가 첨가된 콘크리트에 매립된 철근의 방식성능 평가에 관한 실험적 연구)

  • Park, Jang-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.134-135
    • /
    • 2016
  • To evaluate anti-corrosion performance of rebar in concrete according to the amount of chloride and inhibitor, electrochemical impedance spectroscopy(EIS) method was conducted in this study. For the anti-corrosion performance evaluation according to time, Impedance of rebar in concrete was measured before and after 5 cycle of corrosion acceleration. As a results, The impedance of rebar in concrete added chloride decreased than before corrosion acceleration. However impedance of other specimens was maintained or increased than before corrosion acceleration.

  • PDF

Evaluation of the Corrosion Protection Coating in Accordance with Burn Damage (Burn Damage에 따른 도막의 방청성 평가)

  • Seo, ChangHo;Park, JinHwan
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.290-296
    • /
    • 2016
  • This study was conducted in order to examine the effect of burn damage and the resultant anti-corrosion performance. The breakdown and defect of the paint film caused by burn damage are considered to affect not only the macroscopic appearance but also the adhesive force and the anti-corrosion performance of the paint film. The material of the paint film was epoxy paint that is used most widely for heavy-duty coating, and in order to induce burn damage, heat treatment with a torch was applied to the other side of the paint film. Surface and chemical structure changes according to aging were analyzed using FE-SEM and infrared absorption spectroscopy, and variation in the anti-corrosion performance was analyzed through the AC impedance test.

EVALUATION OF FLEXURAL BOND PERFORMANCE IN R.C BEAM USING 3-TYPES ANTI-CORROSION COATINGS (철근방식을 위한 도포제 종류에 따른 R.C 보의 휨 부착성능 평가)

  • 이태규;이웅종;김종우;이종렬;신도철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.129-133
    • /
    • 1995
  • The purpose of this study is to evaluate the flexural bond performance in beam using 3-types anti-corrosion coatings. For the test. we used $15\times\times20\times110cm$ R.C beams, in which the epoxy, the red lead, and the cementitious anti-corrosion coating re-bars used. The results of test using these 3-type anti-corrosion coatings are shown that the flexural bond performance of cementitious anti-corrosion coating rebar in R.C beam is superior to other anti-corrosion coatings rebars.

  • PDF

Electrochemical Evaluation on Corrosion Resistance of Anti-corrosive Paints

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Yun-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.387-394
    • /
    • 2009
  • It has been observed that coated steel structures are rapidly deteriorated than designed lifetime due to acid rain caused by air pollution etc.. Therefore improvement of corrosion resistance of anti-corrosive paint is very important in terms of safety and economic point of view. In this study corrosion resistance for five kinds of anti-corrosive paints including acryl, fluorine and epoxy resin series were investigated with electrochemical methods such as corrosion potential, polarization curves, impedance and cyclic voltammogram measurements etc.. There were somewhat good relationships between values measured by electrochemical methods such as corrosion current density obtained by cathodic and anodic polarization curves, value of impedance estimated with AC impedance, and polarization resistance on the cyclic voltammogram, for example, corrosion current density was decreased with increasing of values of impedance and polarization resistance on the cyclic voltammogram. However their relationships between corrosion current density and corrosion potential were not well coincided each other. Consequently it is considered that although a corrosion potential of F101 of fuoric resin series shifted to negative direction than other anti-corrosive paints, its corrosion resistance, indicating on the cathodic and anodic polarization curves, AC impedance curves and cyclic voltammogram, was the most superior to other paints, whereas A100 containing arcylic resin showed a relatively poor corrosion resistance compared to other paints.

A Simulation Case Study on Impact Safety Assessment of Roadside Barriers Built with High Anti-corrosion Hot-dip Alloy-coated Steel (용융합금도금 강판 적용 노측용 방호울타리 충돌 안전성 평가 해석 사례 연구)

  • Noh, Myung-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.83-89
    • /
    • 2016
  • As the world's industrial development quickens, the highways and regional expressways have been expanding to serve the logistics and transportation needs of people. The burgeoning road construction has led to a growing interest in roadside installations. These must have reliable performance over long periods, reduced maintenance and high durability. Steel roadside barriers are prone to corrosion and other compromises to their functionality. Therefore, using high anti-corrosion steel material is now seen as a viable solution to this problem. Thus, the objective of this paper is to expand the scope of applications for high anti-corrosion steel material for roadside barriers. This paper assesses the impact safety such as structural performance, occupant protection performance and post-impact vehicular response performance by a simulation review on roadside barriers built with high strength anti-corrosion steel materials named as hot-dip zinc-aluminium-magnesium alloy-coated steel. The simulation test results for the roadside barriers built with high strength anti-corrosion steels with reduced sectional thickness meet the safety evaluation criteria, hence the proposed roadside barrier made by high strength and high anti-corrosion hot-dip zinc-aluminium-magnesium alloy-coated steel will be a good solution to serve safe impact performance as well as save maintenance cost.

Evaluation of Life Time for Anti-Corrosive Methods for Marine Steel Sheet by Cyclic Corrosion Test (실내 가속부식시험을 통한 해양 강관합성 말뚝의 방식 기법 수명 평가)

  • Park, J.W.;Lee, J.G.;Lee, K.W.;Kim, J.H.;Jung, M.K.;Lee, J.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.243-250
    • /
    • 2009
  • When a steel sheet pipe applied to marine environment, an anti-corrosive coating should be treated to obtain long-term life-time for steels, especially, splash zone. Although anti-corrosive property of coatings is required to be tested in real marine environment, it is difficult because of long test time such as 20 years or more time. Therefore, we used cyclic corrosion tester in a laboratory, which has similar conditions with salt-dry-wet process such as real marine environment. Anti-corrosive properties of the coatings and two steels were tested their anti-corrosive properties under cyclic corrosion test conditions(KS D ISO 14993) and the results were compared with estimate life-time in real marine environment. According to cyclic corrosion test, accelerated corrosive factor of each anti-corrosive coating was investigated accelerated corrosive factor from impedance with EIS method. Accelerated corrosive factor of type SS400 carbon steel and A690 was also investigated their accelerated corrosive factor from the regression curves of weigh loss results. One of the anti-corrosive coatings showed about 50 years life-time compared with standard sample life-time. Carbon steel SS400 showed from 0.1 mm/yr to 0.06 mm/yr as its corrosion rate.

Evaluation and Application of Anti-Corrosion Inhibitor for the Corrosion Protection of Reinforcing Bars (철근방식을 위한 방청제의 성능 평가에 관한 연구)

  • 김상철;강승희;이두재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.248-253
    • /
    • 1997
  • The study was carried out to evaluate material characteristics and environmental effects of anti-corrosion inhibitor which is known to be very easy to use, since the admixture is added during concrete mixing. Specimens were fabricate with 6 different dosages of anti-corrosion inhibitor and cured in the autoclave chamber with different number of cycles. As a result of measuring corrosion of reinforcing bars embedded in concrete, it was found that even small amount of admixture application can prevent reinforcing bars from corrosion and the efficiency is gradually decreased with increase of the number of autoclave cycles and of percentage of chloride content. In addition, the admixture will not affect material characteristics such as compressive strength and air content.

  • PDF

An Experimental Study on the Evaluation of Anti-corrosion Performance of High-frequency Arc Metal Spray film on Steel using EIS Method (전기화학적 임피던스 분광법(EIS)을 이용한 고주파 아크 금속용사 피막의 강재 방식성능 평가에 관한 실험적 연구)

  • Choe, Hong-Bok;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.61-62
    • /
    • 2014
  • To evaluate anti-corrosion performance of high-frequency arc metal spray film in accordance with metal type and epoxy sealing coat application status, electrochemical impedance spectroscopy(EIS) method was conducted in this study. As a result, in case of applying Al-Mg alloy metal spray film, it showed the best polarization resistance. In case of applying epoxy sealing coat, it showed increased polarization resistance of arc metal spray film. Through this experiment, it is judged that Al-Mg alloy arc metal spray film with epoxy sealing coat can increase the biggest anti-corrosion performance of high-frequency arc metal spray film on steel.

  • PDF

Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

  • Chaudhry, A.U.;Mittal, Vikas;Mishra, Brajendra
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • The aim of this study was to evaluate the use of iron-nickel oxide ($Fe_2O_3$.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

Methodological approach of evaluation on prefabrication primers for steel structures

  • Chung, Sung-Wook;Hyun, Jeong-Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.707-717
    • /
    • 2021
  • To the date, shipbuilding companies have applied shop primer coating which protects the steel surface from global oxidization in environment. Proper shop primer requires either anti-corrosion ability during construction or anti-porosity ability during welding, and those properties contradict to each other. This report tried to derive an optimizing parameter on these conflicting properties to select a proper shop primer. First, sufficient amounts of the natural salt spray tests were carried out to achieve a series of data for the anti-corrosion ability. Second, lots of T-joint fillet welding test were performed to evaluate the trapped porosity formed in the weld pool. According to the experimental data, we could achieve either the rust-formation rate or the porosity-formation rate, then, each rate was generalized as formulae. Then, we tried to combine these conflicting properties to decide an optimum shop primer.