• 제목/요약/키워드: anthrax detection

검색결과 9건 처리시간 0.027초

Characterization of Bacillus anthracis proteases through protein-protein interaction: an in silico study of anthrax pathogenicity

  • Banerjee, Amrita;Pal, Shilpee;Paul, Tanmay;Mondal, Keshab Chandra;Pati, Bikash Ranjan;Sen, Arnab;Mohapatra, Pradeep Kumar Das
    • 셀메드
    • /
    • 제4권1호
    • /
    • pp.6.1-6.12
    • /
    • 2014
  • Anthrax is the deadly disease for human being caused by Bacillus anthracis. Instantaneous research work on the mode of infection of the organism revealed that different proteases are involved in different steps of pathogenesis. Present study reports the in silico characterization and the detection of pathogenic proteases involved in anthrax infection through protein-protein interaction. A total of 13 acid, 9 neutral, and 1 alkaline protease of Bacillus anthracis were selected for analysing the physicochemical parameter, the protein superfamily and family search, multiple sequence alignment, phylogenetic tree construction, protein-protein interactions and motif finding. Among the 13 acid proteases, 10 were found as extracellular enzymes that interact with immune inhibitor A (InhA) and help the organism to cross the blood brain barrier during the process of infection. Multiple sequence alignment of above acid proteases revealed the position 368, 489, and 498-contained 100% conserved amino acids which could be used to deactivate the protease. Among the groups analyzed, only acid protease were found to interact with InhA, which indicated that metalloproteases of acid protease group have the capability to develop pathogenesis during B. anthracis infection. Deactivation of conserved amino acid position of germination protease can stop the sporulation and germination of B anthracis cell. The detailed interaction study of neutral and alkaline proteases could also be helpful to design the interaction network for the better understanding of anthrax disease.

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

탄저균과 부루셀라균의 신속 검출법 개발 (Development of Rapid Detection Method for Bacillus Anthrax and Brucella Abortus)

  • 최재구
    • 한국환경보건학회지
    • /
    • 제33권5호
    • /
    • pp.434-440
    • /
    • 2007
  • The livestocks are sometimes infected with pathogenic microorganisms such as bird influenza, brucellosis, pig cholerae, and salmonella. However, it is difficult to predict the outcome of these diseases because the livestocks are mostly raised in the rural areas. Efficient systems for detecting and alerting the onset of livestock diseases are urgently required. In these studies, the fluorescent analysis method, luminescent analysis method, and frequently used gene amplification method (polymerase chain reaction) have been developed in order to detect the pathogenic microbes in the early stages of disease progression. By using these developed systems, damages due to the livestock diseases induced by microbes can be minimized. If we can detect livestock diseases in the early stage, the costs for diagnosis and treatment will be reduced, and the livestock can be quickly recovered.

Multiple-locus Variable-number Tandem Repeat 분석을 사용한 Bacillus Anthracis 균주간 특이성 규명 (Strain-specific Detection of Bacillus Anthracis using Multiple-locus Variable-number Tandem Repeat Analysis)

  • 정경화;김상훈;김성주;김지천;채영규
    • 한국군사과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.305-312
    • /
    • 2011
  • Bacillus anthracis(Ba) is a Gram-positive spore-forming bacterium that causes the disease anthrax. The feature of Ba is the presence of two large virulence plasmids, pXO1 and pXO2. Molecular genotyping of Ba has been difficult to the lack of polymorphic DNA marker. Ba isolated from Korea has been genotyped using various nucleotide analysis methods, such as 16s rDNA sequencing and multiple-locus variable-number tandem repeat (MLVA) analysis. We identified genotypes that represent a genetic lineage in the B1 cluster. This study emphasized the need to perform molecular genotyping when attempting to verify a strain-specific Ba.

Detection of Virulence-Associated Genes in Clinical Isolates of Bacillus anthracis by Multiplex PCR and DNA Probes

  • Kumar, Sanjay;Tuteja, Urmil
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권11호
    • /
    • pp.1475-1481
    • /
    • 2009
  • Anthrax is a zoonotic disease caused by Bacillus anthracis, and well recognized as a potential agent for bioterrorism. B. anthracis can be identified by detecting the virulence factors genes located on two plasmids, pXO1 and pXO2. The aim of the present study was to determine the presence of virulence genes in 27 isolates of B. anthracis isolated from clinical and environmental samples. For this purpose, multiplex PCR and DNA probes were designed to detect protective antigen (pag), edema factor (cya), lethal factor (lef), and capsule (cap) genes. Our results indicated that all the isolates contained all the above virulence genes, suggesting that the isolates were virulent. To the best our knowledge, this is the first study about the determination of virulence marker genes in clinical and environmental isolates of B. anthracis using multiplex PCR and DNA probes in India. We suggest that the above methods can be useful in specific identification of virulent B. anthracis in clinical and environmental samples.

Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

  • Jeong, Young-Su;Lee, Jonghee;Kim, Seong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2635-2639
    • /
    • 2013
  • The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

PCR 기법을 이용한 인공감염토양 및 감염동물 장기로 부터 Bacillus anthracis의 검출 (Establishment of PCR to detect Bacillus anthracis in the experimentally infected soil and mice)

  • 이지연;유한상;김종염
    • 대한수의학회지
    • /
    • 제38권3호
    • /
    • pp.574-580
    • /
    • 1998
  • Anthrax caused by Bacillus anthracis is one of the most important zoonotic diseases in the worldwide. To control and prevent the disease effectively, several methods such as development of a fast and specific diagnostic method and vaccine, education etc, have been carried out. However, it still has a problem in the control and prevention. To control, the most important method is the prevention of direct or indirect contact of the causative agent with susceptible host. Therefore, we developed a fast and specific detection method, polymerase chain reaction, of B anthracis from soil and infected animals because the organism could survive long time in the environment including soil due to formation of spore. With the method, virulence genes of B anthracis were successfully amplified from experimentally infected soil and mice. Up to $4.2{\times}10$ of the organisms per gram could be detected with the PCR method from experimentally infected soil. These results suggested that this PCR method could be effectively used not only to detect B anthracis in soil and infected animal but also to provide the information to prevent the disease.

  • PDF

항-보호항원 항체의 역가 측정을 위한 효소면역측정법 밸리데이션 (ELISA Validation for anti-PA Antibody Titer Measurements)

  • 김유진
    • 한국군사과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.478-485
    • /
    • 2010
  • The vaccine is biological pretreatment that improves immunity to a particular disease. We can get immunity from producing antibody with injection antigen which has ability to defense against the disease. The ELISA is the most widely used method to measure antibody titer. We have developed and performed validation of ELISA according to the guideline of KFDA and ICH. In this paper, we have verified ELISA method is an excellent method to measure the titer of anti-PA antibody. We have constructed recombinant protective antigen among anthrax toxins and used as antigen of ELISA. In this validation, we have evaluated precision (repeatability, interlaboratory precision), specificity, linearity(range) and LOD, which are validation articles suggested by guideline. Inter-person precision was replaced with inter-laboratory precision. From the results, we have confirmed high precision in all experiments with CV under 20%.

Generation of a Specific Marker to Discriminate Bacillus anthracis from Other Bacteria of the Bacillus cereus Group

  • Kim, Hyoung-Tai;Seo, Gwi-Moon;Jung, Kyoung-Hwa;Kim, Seong-Joo;Kim, Jee-Cheon;Oh, Kwang-Geun;Koo, Bon-Sung;Chai, Young-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.806-811
    • /
    • 2007
  • Bacillus anthracis is a soil pathogen capable of causing anthrax that is closely related to several environmental species, including B. cereus, B. mycoides, and B. thuringiensis. DNA homology studies showed that B. anthracis, B. cereus, B. mycoides, and B. thuringiensis are closely related, with a high sequence homology. To establish a method to specifically detect B. anthracis in situations such as environmental contamination, we initially performed RAPD-PCR with a 10-mer random primer and confirmed the presence of specific PCR bands only in B. anthracis species. One region specific for B. anthracis was cloned and sequenced, and an internal primer set was designed to amplify a 241-bp DNA fragment within the sequenced region. The PCR system involving these specific primer sets has practical applications. Using lyses methods to prepare the samples for PCR, it was possible to quickly amplify the 241-bp DNA segment from samples containing only a few bacteria. Thus, the PCR detection method developed in this study is expected to facilitate the monitoring of environmental B. anthracis contamination.