DOI QR코드

DOI QR Code

Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

  • Jeong, Young-Su (CBR Defense Directorate, Agency for Defense Development (ADD)) ;
  • Lee, Jonghee (CBR Defense Directorate, Agency for Defense Development (ADD)) ;
  • Kim, Seong-Joo (CBR Defense Directorate, Agency for Defense Development (ADD))
  • Received : 2013.02.27
  • Accepted : 2013.06.07
  • Published : 2013.09.20

Abstract

The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

Keywords

References

  1. Fritze, D. Phytopathology 2004, 94, 1245-1248. https://doi.org/10.1094/PHYTO.2004.94.11.1245
  2. Bartlett, J. G.; Inglesby, T. V., Jr.; Borio, L. Clin. Inject. Dis. 2002, 35, 851-858. https://doi.org/10.1086/341902
  3. Edwards, K. A.; Clancy, H. A.; Baeumner, A. J. Anal. Bioanal. Chem. 2006, 384, 73-84. https://doi.org/10.1007/s00216-005-0090-x
  4. Sintchenko, V.; Iredell, J. R; Gilbert, G. L. Nat. Rev. Microbiol. 2007, 5, 464-470. https://doi.org/10.1038/nrmicro1656
  5. Barbuddhe, S. B.; Maier, T.; Schwarz, G.; Kostrzewa, M.; Hof, H.; Domann, E.; Chakraborty, T.; Hain, T. Appl. Environ. Microbiol. 2008, 74, 5402-5407. https://doi.org/10.1128/AEM.02689-07
  6. Fenselau, C.; Demirev, P. A. Mass Spectrom. Rev. 2001, 20, 157-171. https://doi.org/10.1002/mas.10004
  7. He, Y.; Chang, T. C.; Li, H.; Shi, G.; Tang, Y.-W. Can. J. Microbiol. 2011, 57, 533-538. https://doi.org/10.1139/w11-039
  8. Lasch, P.; Beyer, W.; Nattermann, H.; Stammler, M.; Siegbrecht, E.; Grunow, R.; Naumann, D. Appl. Environ. Microbiol. 2009, 75, 7229-7242. https://doi.org/10.1128/AEM.00857-09
  9. Lay, J. O., Jr.; Liyanage, R. In Identification of Microorganisms by Mass Spectrometry; Wilkins, C. L., Lay, J. O., Jr., Eds.; John Wiley & Sons: NJ, U.S.A, 2006; p 352.
  10. Moura, H.; Woolfitt, A. R.; Carvalho, M. G.; Pavlopoulos, A.; Teixeira, L. M.; Satten, G. A.; Barr, J. R. FEMS Immunol. Med. Microbiol. 2008, 53, 333-342. https://doi.org/10.1111/j.1574-695X.2008.00428.x
  11. Welker, M.; Moore, E. R. B. Syst. Appl. Microbiol. 2011, 34, 2-11. https://doi.org/10.1016/j.syapm.2010.11.013
  12. Aemirev, P. A.; Feldman, A. B.; Kowalski, P.; Lin, J. S. Anal. Chem. 2005, 77, 7455-7461. https://doi.org/10.1021/ac051419g
  13. Nicholson, W. L.; Setlow, P. In Molecular Biological Methods for Bacillus; Harwood, C. R., Cutting, S. M., Eds.; Chichester, Wiley: 1990; pp 391-450.
  14. Dang, J. L.; Heroux, K.; Kearney, J.; Arasteh, A.; Gostomski, M.; Emanuel, P. A. Appl. Environ. Microbiol. 2001, 67, 3665-3670. https://doi.org/10.1128/AEM.67.8.3665-3670.2001
  15. Savitzky, A.; Golay, M. J. E. Anal. Chem. 1964, 36, 1627-1639. https://doi.org/10.1021/ac60214a047
  16. Marchetti-Deschmann, M.; Winkler, W.; Dong, H.; Lohninger, H.; Kubicek, C. P.; Allmaier, G. Food Technolol. Biotechnol. 2012, 50, 334-342.
  17. Chen, H. Y.; Chen, Y. C. Rapid Commun. Mass Spectrom. 2005, 19, 3564-3568. https://doi.org/10.1002/rcm.2229

Cited by

  1. analysis using MALDI-TOF mass spectrometry vol.59, pp.2, 2014, https://doi.org/10.1111/lam.12261
  2. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis vol.6, pp.1664-302X, 2015, https://doi.org/10.3389/fmicb.2015.00791
  3. MALDI-TOF Mass Spectrometric Analysis of Chemical Warfare Nerve Agent Simulants vol.37, pp.3, 2016, https://doi.org/10.1002/bkcs.10672
  4. Sample preparation of chemical warfare agent simulants on a digital microfluidic (DMF) device using magnetic bead-based solid-phase extraction vol.21, pp.8, 2017, https://doi.org/10.1007/s10404-017-1976-6
  5. Bacillus Classification Based on Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry—Effects of Culture Conditions vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-15808-5
  6. Development of a real-time handheld bioaerosol monitoring system using ultraviolet-light emitting diode induced fluorescence vol.48, pp.4, 2013, https://doi.org/10.1080/10739149.2020.1735413
  7. Identification of Bacteria in Soil by MALDI-TOF MS and Analysis of Bacillus spp., Paenibacillus spp. and Pseudomonas spp. with PCA vol.10, pp.6, 2013, https://doi.org/10.1080/22297928.2021.1877194
  8. The efficiency of MALDI-TOF MS method in detecting Staphylococcus aureus isolated from raw milk and artisanal dairy foods vol.19, pp.1, 2021, https://doi.org/10.1080/19476337.2021.1977392
  9. Maldi-TOF MS identification and antibiotic resistance of Escherichia coli isolated from playground vol.159, pp.None, 2021, https://doi.org/10.1016/j.micpath.2021.105155