Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung (Metabolic and Biomolecular Engineering National Research Laboratory, (BK21 Program), BioProcess Engineering Research Center, and Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology) ;
  • Park, Jong-Pil (Metabolic and Biomolecular Engineering National Research Laboratory, (BK21 Program), BioProcess Engineering Research Center, and Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology) ;
  • Seo, Gwi-Moon (Division of Molecular and Life Sciences, Hanyang University) ;
  • Chai, Young-Gyu (Division of Molecular and Life Sciences, Hanyang University) ;
  • Lee, Sang-Yup (Metabolic and Biomolecular Engineering National Research Laboratory, (BK21 Program), BioProcess Engineering Research Center, and Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology)
  • Published : 2006.11.30

Abstract

A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

Keywords

References

  1. Bell, C. A., J. R. Uhl, T. L. Hadfield, J. C. David, R. F. Meyer, T. F. Smith, and F. R. Cockerill 3rd. 2002. Detection of Bacillus anthracis DNA by LightCycler PCR. J. Clin. Microbiol. 40: 2897-2902 https://doi.org/10.1128/JCM.40.8.2897-2902.2002
  2. Cummings, R. T., S. P. Salowe, B. R. Cunningham, J. Wiltsie, Y. W. Park, L. M. Sonatore, D. Wisniewski, C. M. Douglas, J. D. Hermes, and E. M. Scolnick. 2002. A peptide-based fluorescence resonance energy transfer assay for Bacillus anthracis lethal factor protease. Proc. Natl. Acad. Sci. USA 99: 6603-6606
  3. Hartley, H. A. and A. J. Baeumner. 2003. Biosensor for the specific detection of a single viable B. anthracis spore. Anal. Bioanal. Chem. 376: 319-327 https://doi.org/10.1007/s00216-003-1939-5
  4. Helgason, E., O. A. Okstad, D. A. Caugant, H. A. Johansen, A. Fouet, M. Mock, I. Hegna, and A. Kolsto. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66: 2627-2630 https://doi.org/10.1128/AEM.66.6.2627-2630.2000
  5. Higgins, J. A., M. Cooper, L. Schroeder-Tucker, S. Black, D. Miller, J. S. Karns, E. Manthey, R. Breeze, and M. L. Perdue. 2003. A field investigation of Bacillus anthracis contamination of U.S. Department of Agriculture and other Washington, D.C., buildings during the anthrax attack of October 2001. Appl. Environ. Microbiol. 69: 593-599 https://doi.org/10.1128/AEM.69.1.593-599.2003
  6. Jackson, P. J., M. E. Hugh-Jones, D. M. Adair, G. Green, K. K. Hill, C. R. Kuske, L. M. Grinberg, F. A. Abramova, and P. Keim. 1998. PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: The presence of multiple Bacillus anthracis strains in different victims. Proc. Natl. Acad. Sci. USA 95: 1224-1229
  7. Jung, S. J., H.-J. Kim, and H.-Y. Kim. 2005. Quantitative detection of Salmonella typhimurium contamination in milk, using real-time PCR. J. Microbiol. Biotechnol. 15: 1353-1358
  8. Kwak, B.-Y., B.-J. Kwon, C.-H. Kweon, and D.-H. Shon. 2004. Detection of Aspergillus, Penicillium, and Fusarium species by sandwich enzyme-linked immunosorbent assay using mixed monoclonal antibodies. J. Microbiol. Biotechnol. 14: 385-389
  9. Makrides, S. C., C. Gasbarro, and J. M. Bello. 2005. Bioconjugation of quantum dot luminescent probes for Western blot analysis. Biotechniques 39: 501-506 https://doi.org/10.2144/000112004
  10. McBride, M. T., D. Masquelier, B. J. Hindson, A. J. Makarewicz, S. Brown, K. Burris, T. Metz, R. G. Langlois, K. W. Tsang, R. Bryan, D. A. Anderson, K. S. Venkateswaran, F. P. Milanovich, and B. W. Colston Jr. 2003. Autonomous detection of aerosolized Bacillus anthracis and Yersinia pestis. Anal. Chem. 75: 5293-5299 https://doi.org/10.1021/ac034722v
  11. Medintz, I. L., A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro. 2003. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2: 630-638 https://doi.org/10.1038/nmat961
  12. Nicholson, W. L. and P. Setlow. 1990. Sporulation, germination and outgrowth, pp. 391-429. In C. R. Harwood, and S. M. Cutting (eds.), Molecular Biological Methods for Bacillus. John Wiley & Sons Ltd., Hoboken, N.J
  13. Oggioni, M., R. F. Meacci, A. Carattoli, A. Ciervo, G. Orru, A. Cassone, and G. Pozzi. 2002. Protocol for real-time PCR identification of anthrax spores from nasal swabs after broth enrichment. J. Clin. Microbiol. 40: 3956-3963 https://doi.org/10.1128/JCM.40.11.3956-3963.2002
  14. Oncu, S., S. Oncu, and S. Sakarya. 2003. Anthrax - an overview. Med. Sci. Monit. 9: RA276-RA283
  15. Radnedge, L., P. G. Agron, K. K. Hill, P. J. Jackson, L. O. Ticknor, P. Keim, and G. L. Andersen. 2003. Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 69: 2755-2764 https://doi.org/10.1128/AEM.69.5.2755-2764.2003
  16. Reissman, D. B., E. B. Steinberg, J. M. Magri, and D. B. Jernigan. 2003. The anthrax epidemiologic tool kit: An instrument for public health preparedness. Biosecur. Bioterror. 1: 111-116 https://doi.org/10.1089/153871303766275772
  17. Rivera, V. R., G. A. Merrill, J. A. White, and M. A. Poli. 2003. An enzymatic electrochemiluminescence assay for the lethal factor of anthrax. Anal. Biochem. 321: 125-130 https://doi.org/10.1016/S0003-2697(03)00424-X
  18. Stopa, P. J. 2000. The flow cytometry of Bacillus anthracis spores revisited. Cytometry 41: 237-244
  19. Swartz, M. N. 2001. Recognition and management of anthrax - an update. N. Engl. J. Med. 345: 1621-1626 https://doi.org/10.1056/NEJMra012892
  20. Volokhov, D., A. Pomerantsev, V. Kivovich, A. Rasooly, and V. Chizhikov. 2004. Identification of Bacillus anthracis by multiprobe microarray hybridization. Diagn. Microbiol. Infect. Dis. 49: 163-171 https://doi.org/10.1016/j.diagmicrobio.2004.03.015
  21. Wang, S. H., J. B. Zhang, Z. P. Zhang, Y. F. Zhou, R. F. Yang, J. Chen, Y. C. Guo, F. You, and X. E. Zhang. 2006. Construction of single chain variable fragment (ScFv) and biscFv-alkaline phosphatase fusion protein for detection of Bacillus anthracis. Anal. Chem. 78: 997-1004 https://doi.org/10.1021/ac0512352
  22. Wang, S. H., J. K. Wen, Y. F. Zhou, Z. P. Zhang, R. F. Yang, J. B. Zhang, J. Chen, and X. E. Zhang. 2004. Identification and characterization of Bacillus anthracis by multiplex PCR on DNA chip. Biosens. Bioelectron. 20: 807-813 https://doi.org/10.1016/j.bios.2004.03.019
  23. Williams, D. D., O. Benedek, and C. L. Turnbough Jr. 2003. Species-specific peptide ligands for the detection of Bacillus anthracis spores. Appl. Environ. Microbiol. 69: 6288-6293 https://doi.org/10.1128/AEM.69.10.6288-6293.2003
  24. Yang, M. Y., E. Ferrari, and D. J. Henner. 1984. Cloning of the neutral protease gene of Bacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutation. J. Bacteriol. 160: 15-21