• Title/Summary/Keyword: anomaly-based detection

Search Result 447, Processing Time 0.034 seconds

A Study on Anomaly Detection Neural Network Model Based On Flow Direction/Velocity Data (유향/유속 데이터 중심의 이상 검출 신경망 모델)

  • Seong-Kil Hyun;Dong-Young Yoo
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.555-557
    • /
    • 2023
  • 해양의 영향을 많이 받는 우리나라의 지리적 특성상 해양 상황은 산업 및 생업과 밀접한 관계가 있다. OPEN API 를 이용하여 유향/유속, 조위등 해양 환경관련 실시간 시계열 데이터를 수집한 후 2 차원 공간에 표시하여 순환 신경망 모델을 이용하여 학습한다. 학습된 모델을 실제 데이터에 적용하여 파랑을 예측한다. 시계열의 성격이 있고 공간상에 표시할 수 있는 데이터라면 본 논문에서 제시한 체계를 통해 예측할 수 있을 것이라 예상한다.

An Anomaly Detection based on Probabilistic Behavior of Hidden Markov Models (은닉마코프모델을 이용한 이상징후 탐지 기법)

  • Lee, Eun-Young;Han, Chan-Kyu;Choi, Hyoung-Kee
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.1139-1142
    • /
    • 2008
  • 인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.

A Study on VR Device User Authentication Model based on User Behavior using Anomaly Detection Model (이상 탐지 모델을 활용한 사용자 행위 기반의 VR기기 사용자 인증 모델 연구)

  • Woo-Jin Jeon;Hyoung-Shick Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.856-858
    • /
    • 2024
  • VR 기술의 발전은 다양한 분야에서 사용자에게 몰입감 있는 가상 현실 경험을 제공하지만, VR기기 내부에 사용자의 생체 데이터 및 금융정보와 같은 민감한 정보들이 저장되어 새로운 보안 문제를 야기하고 있다. 이에 따라 PIN, 패스워드 등과 같은 기존의 인증 방식이 VR 기기에 적용되고 있지만 이들은 shoulder-surfing attack 공격 취약하며 VR 환경에서 사용하기에 불편한 인터페이스를 가지고 있다. 따라서 본 논문에서는 이상 탐지 모델을 활용하여 외부 추론 공격에 강인하며 VR 환경에 적합한 사용자 행위 기반의 VR기기 사용자 인증 모델을 구현한다. 특정 task를 수행하는 동안 사용자의 행위 데이터를 수집 및 feature 데이터를 추출하고, 정상으로 라벨링 된 사용자의 데이터로 이상 탐지 머신러닝 모델들을 학습 후 정상 데이터와 비정상 데이터를 이용하여 인증 모델의 성능을 평가하였다. OC-SVM이 87.72%의 F1-score로 세 모델 중 가장 높은 성능을 보임을 확인하였으며, 향후 인증 모델 성능 향상을 위한 계획을 제시하였다.

Anomaly Detection System for Cloud Resources Using Representation Learning-Based Deep Learning Models (표현 학습 기반의 딥러닝 모델을 활용한 클라우드 자원 이상 감지 시스템)

  • Min-Yeong Lee;Heon-Chang Yu
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.658-661
    • /
    • 2024
  • 퍼블릭 클라우드 시장이 성장하면서 퍼블릭 클라우드에서 호스팅하는 컴퓨팅 자원으로 구축된 거대하고 복잡한 IT 시스템이 점차 많아지고 있다. 이러한 시스템의 증가는 서비스 장애 발생 확률을 높이므로, 장애 관리 및 선제 감지를 위한 퍼블릭 클라우드 자원의 이상 감지 연구에 대한 수요 또한 증가하고 있다. 그러나 연구에 활용할 수 있는 벤치마크 데이터셋이 없다는 점과, 실제 자원에서 추출할 수 있는 데이터는 레이블링이 되어 있지 않은 불균형 데이터라는 점 때문에 관련 연구가 부족한 상황이다. 이러한 문제를 해결하고자 본 논문은 비지도 방식의 표현 학습 기반 딥러닝 모델을 활용한 이상 감지 시스템을 제안한다. 시스템의 이상 감지 성능을 유지하고자 일정 주기마다 다수의 딥러닝 모델을 재학습하고 비교하여 최적의 모델로 업데이트 하는 방식을 고안하였다. 해당 시스템의 평가에는 실제 퍼블릭 클라우드 자원에서 발생한 메트릭 데이터가 활용됐으며, 그 결과 준수한 이상 감지 성능을 보인다는 것을 확인하였다.

Trends in Anomaly and Threat Detection on AI-based (AI 기반 이상행위 및 위협징후 탐지에 대한 동향)

  • Taehoon Kim;Su-Hyun Kim;Im-Yeong Lee
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.203-205
    • /
    • 2024
  • 현대 사이버 위협의 복잡성이 증가함에 따라 이상행위 및 위협징후 탐지를 위한 AI 기반 기술 사용이 크게 증가하고 있다. 본 논문은 AI 기반 이상행위 및 위협징후 탐지의 최신 동향을 분석하여 AI 기반 이상행위 탐지 시스템의 탐지 정확도를 높이는 메커니즘과 위협징후 탐지 속도를 가속화하는 기술에 대해 논의한다. 연구 결과에 따르면, AI 기반 모델은 기계 학습 알고리즘의 발전, 보다 다양한 학습 데이터셋, 최적화 기술 덕분에 정확도와 속도 모두에서 개선을 보이고 있다. 본 논문은 현재의 동향과 이들이 AI 기반 보안 시스템의 미래에 미치는 영향을 종합적으로 다루고자 한다.

TKAD: Transformer Networks and Kalman Filter-based Approach for Anomaly Detection in Cloud System Time-Series Logs (TKAD: 트랜스포머 구조와 칼만 필터 결합을 통한 클라우드 시스템 시계열 로그 이상 탐지 기법)

  • Yongseok Heo;Heonchang Yu
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.580-583
    • /
    • 2024
  • 서비스 고도화와 퍼블릭 클라우드 확산으로 인해 시스템 복잡성과 규모가 증가하면서 시계열 로그 데이터의 양과 유형이 증가하고 있다. 안정적인 시스템 운영을 위해 시계열 로그 모니터링은 필수적이며 이상 탐지에는 높은 정확도가 요구된다. 본 연구에서는 트랜스포머 구조와 칼만 필터를 결합해 시스템 장애와 무관한 로그 데이터의 노이즈를 제거하고, 시계열 데이터의 패턴을 주기적으로 학습하여 임계치를 자동으로 조정함으로써 이상 탐지의 정확도를 높이고자 한다. 제안된 방법의 성능을 검증하기 위해 운영 중인 클라우드 환경에서 발생된 시계열 로그를 기반으로 실험을 수행한 결과, 연구에 사용된 다른 4 가지 딥러닝 기반 이상 탐지 모델보다 우수한 성능을 보였다.

Anomaly Detection and Classification Based on In-Context Learning Using LMM (LMM(Large Multimodal Model)을 활용한 In-Context Learning 기반 이상 상황 탐지 및 분류)

  • Ha-Ri Lee;Jin-Young Moon
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.715-718
    • /
    • 2024
  • 본 연구는 In-context learning 을 적용한 LMM 을 이용하여 감시 카메라 비디오 데이터를 기반으로 이상 상황을 탐지하고 이에 대한 범죄 클래스를 분류하는 방법을 제안한다. 특히 VTimeLLM[1] 모델을 사용하여 비디오 데이터를 분석하고, '정상' 및 '비정상' 이벤트를 분류한다. 추가적으로 '비정상' 이벤트는 13 개의 범죄 클래스 중 하나로 분류된다. 본 연구에서 zero-shot 과 few-shot 학습 기법을 적용하여 기존 방법들과 정량적으로 비교 실험을 수행했다. 실험 결과 LMM 과 In-context learning 을 결합한 방식이 기존 방법들과 비교해 이상 상황 탐지 성능이 개선되었다.

Feature Selection for Anomaly Detection Based on Genetic Algorithm (유전 알고리즘 기반의 비정상 행위 탐지를 위한 특징선택)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.1-7
    • /
    • 2018
  • Feature selection, one of data preprocessing techniques, is one of major research areas in many applications dealing with large dataset. It has been used in pattern recognition, machine learning and data mining, and is now widely applied in a variety of fields such as text classification, image retrieval, intrusion detection and genome analysis. The proposed method is based on a genetic algorithm which is one of meta-heuristic algorithms. There are two methods of finding feature subsets: a filter method and a wrapper method. In this study, we use a wrapper method, which evaluates feature subsets using a real classifier, to find an optimal feature subset. The training dataset used in the experiment has a severe class imbalance and it is difficult to improve classification performance for rare classes. After preprocessing the training dataset with SMOTE, we select features and evaluate them with various machine learning algorithms.

Anomalous Trajectory Detection in Surveillance Systems Using Pedestrian and Surrounding Information

  • Doan, Trung Nghia;Kim, Sunwoong;Vo, Le Cuong;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.256-266
    • /
    • 2016
  • Concurrently detected and annotated abnormal events can have a significant impact on surveillance systems. By considering the specific domain of pedestrian trajectories, this paper presents two main contributions. First, as introduced in much of the work on trajectory-based anomaly detection in the literature, only information about pedestrian paths, such as direction and speed, is considered. Differing from previous work, this paper proposes a framework that deals with additional types of trajectory-based anomalies. These abnormal events take places when a person enters prohibited areas. Those restricted regions are constructed by an online learning algorithm that uses surrounding information, including detected pedestrians and background scenes. Second, a simple data-boosting technique is introduced to overcome a lack of training data; such a problem particularly challenges all previous work, owing to the significantly low frequency of abnormal events. This technique only requires normal trajectories and fundamental information about scenes to increase the amount of training data for both normal and abnormal trajectories. With the increased amount of training data, the conventional abnormal trajectory classifier is able to achieve better prediction accuracy without falling into the over-fitting problem caused by complex learning models. Finally, the proposed framework (which annotates tracks that enter prohibited areas) and a conventional abnormal trajectory detector (using the data-boosting technique) are integrated to form a united detector. Such a detector deals with different types of anomalous trajectories in a hierarchical order. The experimental results show that all proposed detectors can effectively detect anomalous trajectories in the test phase.

Anomaly Detection Method Based on Trajectory Classification in Surveillance Systems (감시 시스템에서 궤적 분류를 이용한 이상 탐지 방법)

  • Jeonghun Seo;Jiin Hwang;Pal Abhishek;Haeun Lee;Daesik Ko;Seokil Song
    • Journal of Platform Technology
    • /
    • v.12 no.3
    • /
    • pp.62-70
    • /
    • 2024
  • Recent surveillance systems employ multiple sensors, such as cameras and radars, to enhance the accuracy of intrusion detection. However, object recognition through camera (RGB, Thermal) sensors may not always be accurate during nighttime, in adverse weather conditions, or when the intruder is camouflaged. In such situations, it is possible to detect intruders by utilizing the trajectories of objects extracted from camera or radar sensors. This paper proposes a method to detect intruders using only trajectory information in environments where object recognition is challenging. The proposed method involves training an LSTM-Attention based trajectory classification model using normal and abnormal (intrusion, loitering) trajectory data of animals and humans. This model is then used to identify abnormal human trajectories and perform intrusion detection. Finally, the validity of the proposed method is demonstrated through experiments using real data.

  • PDF