Acknowledgement
본 연구는 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2020-0-00004, 장기 시각 메모리 네트워크 기반의 예지형 시각지능 핵심기술 개발)
References
- B. Huang, X. Wang, H. Chen, Z. Song, W. Zhu, "VTimeLLM: Empower LLM to Grasp Video Moments," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.14271-14280, 2024.
- W. Sultani, C. Chen, and M. Shah, "Real-World Anomaly Detection in Surveillance Videos," in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
- A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, I. Sutskever, "Learning Transferable Visual Models From Natural Language Supervision," Proceedings of the 38th International Conference on Machine Learning (ICML), 2021.
- J.-C. Wu, H.-Y. Hsieh, D.-J. Chen, C.-S. Fuh, T.-L. Liu, "Self-Supervised Sparse Representation for Video Anomaly Detection," Proceedings of the European Conference on Computer Vision (ECCV), 2022.
- Y. Zhou, Y. Qu, X. Xu, F. Shen, J. Song, H. Shen, "BatchNorm-based Weakly Supervised Video Anomaly Detection," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.