• 제목/요약/키워드: and interdisciplinary learning

검색결과 235건 처리시간 0.025초

위 내시경 영상을 이용한 병변 진단을 위한 딥러닝 기반 컴퓨터 보조 진단 시스템 (Deep Learning based Computer-aided Diagnosis System for Gastric Lesion using Endoscope)

  • 김동현;조현종
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.928-933
    • /
    • 2018
  • Nowadays, gastropathy is a common disease. As endoscopic equipment are developed and used widely, it is possible to provide a large number of endoscopy images. Computer-aided Diagnosis (CADx) systems aim at helping physicians to identify possibly malignant abnormalities more accurately. In this paper, we present a CADx system to detect and classify the abnormalities of gastric lesions which include bleeding, ulcer, neuroendocrine tumor and cancer. We used an Inception module based deep learning model. And we used data augmentation for learning. Our preliminary results demonstrated promising potential for automatically labeled region of interest for endoscopy doctors to focus on abnormal lesions for subsequent targeted biopsy, with Az values of Receiver Operating Characteristic(ROC) curve was 0.83. The proposed CADx system showed reliable performance.

기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증 (Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm)

  • 오광철;김석준;박선용;이충건;조라훈;전영광;김대현
    • 생물환경조절학회지
    • /
    • 제31권3호
    • /
    • pp.152-162
    • /
    • 2022
  • 본 연구는 데이터를 기반으로 한 인공지능 기계학습 기법을 활용하여 온실 내부온도 예측 시뮬레이션 모델을 개발을 수행하였다. 온실 시스템의 내부온도 예측을 위해서 다양한 방법이 연구됐지만, 가외 변인으로 인하여 기존 시뮬레이션 분석방법은 낮은 정밀도의 문제점을 지니고 있다. 이러한 한계점을 극복하기 위하여 최근 개발되고 있는 데이터 기반의 기계학습을 활용하여 온실 내부온도 예측 모델 개발을 수행하였다. 기계학습모델은 데이터 수집, 특성 분석, 학습을 통하여 개발되며 매개변수와 학습방법에 따라 모델의 정확도가 크게 변화된다. 따라서 데이터 특성에 따른 최적의 모델 도출방법이 필요하다. 모델 개발 결과 숨은층 증가에 따라 모델 정확도가 상승하였으며 최종적으로 GRU 알고리즘과 숨은층6에서 r2 0.9848과 RMSE 0.5857℃로 최적 모델이 도출되었다. 본 연구를 통하여 온실 외부 데이터를 활용하여 온실 내부온도 예측 모델 개발이 가능함을 검증하였으며, 추후 다양한 온실데이터에 적용 및 비교분석이 수행되어야 한다. 이후 한 단계 더 나아가 기계학습모델 예측(predicted) 결과를 예보(forecasting)단계로 개선하기 위해서 데이터 시간 길이(sequence length)에 따른 특성 분석 및 계절별 기후변화와 작물에 따른 사례별로 개발 모델을 관리하는 등의 다양한 추가 연구가 수행되어야 한다.

전공 간 협력 프로젝트 학습이 대학생의 의사소통, 문제해결, 자기주도적 학습능력에 미치는 효과 (The Effect of Interdisciplinary Cooperation Project Learning on Communication, Problem-Solving, and Self-Directed Learning Ability of University Students)

  • 김근곤;윤진;최경윤;박선영;배진희
    • 한국간호교육학회지
    • /
    • 제14권2호
    • /
    • pp.252-261
    • /
    • 2008
  • Purpose: The purpose of this study was to explore how an educator can empower students by fostering communication, problem-solving, and self-directed learning ability. Method: In order to accomplish this purpose, 136 students who were attending J University and 105 students attending M University participated in the questionnaire. The students were freshman in the nursing or social welfare departments, There were 136 in the control group and 105 in the experimental group. The control group was given an applicable class of project learning. On the other hand, the experimental group was given traditional lessons once a week for 15 weeks. The research instrument used the measuring instruments developed by KEDI for communication and problem-solving and self-directed learning ability. Data was analysed by ANCOVA with SPSS/PC. Result: The results of analysis show that communication, problem-solving, and self-directed learning ability significantly increased in the experimental group. Conclusion: Based on the research finding, project learning has an educational value. Interdisciplinary cooperation project learning is effective for communication, problem-solving, and self-directed learning ability.

3D Object Generation and Renderer System based on VAE ResNet-GAN

  • Min-Su Yu;Tae-Won Jung;GyoungHyun Kim;Soonchul Kwon;Kye-Dong Jung
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.142-146
    • /
    • 2023
  • We present a method for generating 3D structures and rendering objects by combining VAE (Variational Autoencoder) and GAN (Generative Adversarial Network). This approach focuses on generating and rendering 3D models with improved quality using residual learning as the learning method for the encoder. We deep stack the encoder layers to accurately reflect the features of the image and apply residual blocks to solve the problems of deep layers to improve the encoder performance. This solves the problems of gradient vanishing and exploding, which are problems when constructing a deep neural network, and creates a 3D model of improved quality. To accurately extract image features, we construct deep layers of the encoder model and apply the residual function to learning to model with more detailed information. The generated model has more detailed voxels for more accurate representation, is rendered by adding materials and lighting, and is finally converted into a mesh model. 3D models have excellent visual quality and accuracy, making them useful in various fields such as virtual reality, game development, and metaverse.

개인정보 특화 개체명 주석 대화 데이터셋 기반 생성AI 활용 개체명 탐지 (Named Entity Detection Using Generative Al for Personal Information-Specific Named Entity Annotation Conversation Dataset)

  • 강예지;비립;장연지;박서윤;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.499-504
    • /
    • 2023
  • 본 연구에서는 민감한 개인정보의 유출과 남용 위험이 높아지고 있는 상황에서 정확한 개인정보 탐지 및 비식별화의 효율을 높이기 위해 개인정보 항목에 특화된 개체명 체계를 개발하였다. 개인정보 태그셋이 주석된 대화 데이터 4,981세트를 구축하고, 생성 AI 모델을 활용하여 개인정보 개체명 탐지 실험을 수행하였다. 실험을 위해 최적의 프롬프트를 설계하여 퓨샷러닝(few-shot learning)을 통해 탐지 결과를 평가하였다. 구축한 데이터셋과 영어 기반의 개인정보 주석 데이터셋을 비교 분석한 결과 고유식별번호 항목에 대해 본 연구에서 구축한 데이터셋에서 더 높은 탐지 성능이 나타났으며, 이를 통해 데이터셋의 필요성과 우수성을 입증하였다.

  • PDF

A Study on Security Event Detection in ESM Using Big Data and Deep Learning

  • Lee, Hye-Min;Lee, Sang-Joon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권3호
    • /
    • pp.42-49
    • /
    • 2021
  • As cyber attacks become more intelligent, there is difficulty in detecting advanced attacks in various fields such as industry, defense, and medical care. IPS (Intrusion Prevention System), etc., but the need for centralized integrated management of each security system is increasing. In this paper, we collect big data for intrusion detection and build an intrusion detection platform using deep learning and CNN (Convolutional Neural Networks). In this paper, we design an intelligent big data platform that collects data by observing and analyzing user visit logs and linking with big data. We want to collect big data for intrusion detection and build an intrusion detection platform based on CNN model. In this study, we evaluated the performance of the Intrusion Detection System (IDS) using the KDD99 dataset developed by DARPA in 1998, and the actual attack categories were tested with KDD99's DoS, U2R, and R2L using four probing methods.

벽지문양을 소재로 한 수학학습자료 개발연구 (A study on development of teaching/learning materials based on wallpaper patterns)

  • 신현용;신실라;문태선;권혜윤;이윤우
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제53권3호
    • /
    • pp.435-447
    • /
    • 2014
  • Recently, the interdisciplinary integration and story-telling are often mentioned in mathematics education. It is probably because they might be helpful to students for positive attitude for mathematics. In this research, through brief discussion mathematics related with wallpaper patterns, we try to integrate mathematics and design, and eventually develop the teaching/learning materials for experience activities and story-telling.

An Interdisciplinary Revolving Door Enrichment Model: Chances and Challenges of Involving pre-service Mathematics Teachers

  • Halverscheid, Stefan
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제8권3호
    • /
    • pp.175-182
    • /
    • 2004
  • The design of learning environments which encourage students to work in a creative manner on mathematical problems is a creative process in itself. The concept of the Saturday University program is described in which pre-service teachers are guided at teaching students in extra-curriculum activities on interdisciplinary topics. In the process of the didactical reconstruction of mathematical problems, the pre-service teachers go through the stages of a revolving door model y.

  • PDF

Application of reinforcement learning to hyper-redundant system Acquisition of locomotion pattern of snake like robot

  • Ito, K.;Matsuno, F.
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.65-70
    • /
    • 2001
  • We consider a hyper-redundant system that consists of many uniform units. The hyper-redundant system has many degrees of freedom and it can accomplish various tasks. Applysing the reinforcement learning to the hyper-redundant system is very attractive because it is possible to acquire various behaviors for various tasks automatically. In this paper we present a new reinforcement learning algorithm "Q-learning with propagation of motion". The algorithm is designed for the multi-agent systems that have strong connections. The proposed algorithm needs only one small Q-table even for a large scale system. So using the proposed algorithm, it is possible for the hyper-redundant system to learn the effective behavior. In this algorithm, only one leader agent learns the own behavior using its local information and the motion of the leader is propagated to another agents with time delay. The reward of the leader agent is given by using the whole system information. And the effective behavior of the leader is learned and the effective behavior of the system is acquired. We apply the proposed algorithm to a snake-like hyper-redundant robot. The necessary condition of the system to be Markov decision process is discussed. And the computer simulation of learning the locomotion is demonstrated. From the simulation results we find that the task of the locomotion of the robot to the desired point is learned and the winding motion is acquired. We can conclude that our proposed system and our analysis of the condition, that the system is Markov decision process, is valid.

  • PDF

네트워크 데이터 정형화 기법을 통한 데이터 특성 기반 기계학습 모델 성능평가 (Performance Evaluation of a Machine Learning Model Based on Data Feature Using Network Data Normalization Technique)

  • 이우호;노봉남;정기문
    • 정보보호학회논문지
    • /
    • 제29권4호
    • /
    • pp.785-794
    • /
    • 2019
  • 최근 4차 산업 혁명 기술 중 하나인 딥러닝(Deep Learning) 기술은 보안 분야에서는 탐지하기 어려운 네트워크 데이터의 숨겨진 의미를 식별하고 공격을 예측하는 데 사용되고 있다. 침입탐지에 사용될 딥러닝 알고리즘을 선택하기 전에 데이터의 속성과 품질 분석이 필요하다. 학습에 사용되는 데이터의 오염여부에 따라 탐지 방법에 영향을 주기 때문이다. 따라서 데이터의 특징을 파악하고 특성을 선정해야 한다. 본 논문에서는 네트워크 데이터 셋을 이용하여 악성코드의 단계적 특징을 분석하고 특성을 추출하여 딥러닝 모델을 적용하였을 때 각 특성이 성능에 미치는 영향을 분석하였다. 네트워크 특징에 따른 특성들의 비교에 대한 트래픽 분류 실험을 진행하였으며 선정한 특성을 기반으로 96.52% 정확도를 분류하였다.