• Title/Summary/Keyword: analytical and numerical methods

Search Result 395, Processing Time 0.029 seconds

지하 하수터널 주변의 오염물 거동해석

  • 정일문;한일영;차성수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.327-330
    • /
    • 2002
  • In this study, analyses of contaminant transport are peformed to evaluate the diffusion effect of A sewage tunnel. First, Crank's analytical method is used to measure the concentration change of contaminant with time and space. Two dimensional numerical analysis is performed to measure concentration distribution of contaminant. Both methods show that the diffusion effect is little even after 500 years. This means that when flow converges into the tunnel, the environmental effect of contaminant in tunnel is not serious because there is no advection occurs.

  • PDF

NEW HOMOTOPY PERTURBATION METHOD FOR SOLVING INTEGRO-DIFFERENTIAL EQUATIONS

  • Kim, Kyoum Sun;Lim, Hyo Jin
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.981-992
    • /
    • 2012
  • Integro-differential equations arise in modeling various physical and engineering problems. Several numerical and analytical methods have been developed to solving such equations. We introduce the NHPM for solving nonlinear integro-differential equations. Several examples for solving integro-differential equations are presented to illustrate the efficiency of the proposed NHPM.

삼중이온 주입기술에 의한 GaAs Varactor diode의 설계

  • 류시찬;조광래;이진구;윤현보
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1986.04a
    • /
    • pp.206-210
    • /
    • 1986
  • Double Ion Implantation methods are used to improve the stiffness os carrier profiles, and then the analytical solutions to Poisson`s equation are derived with summation of each carrier profile. Numerical analyses are done using profer boudary conditions and the results show that the improvement of voltage-dependent-capacitance ratio (C(!)/C(25)) is obtained up to B.6. The third ion implantation is for the enhancement of the Schottky barrier height.

  • PDF

A Case Study for Evaluating Groundwater Condition in RMR and Q Rock Mass Classification on Bard Rock Tunnel (RMR 및 Q 분류시 지하수 조건 평가방법에 관한 사례 연구)

  • 이대혁;이철욱;김호영
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.353-361
    • /
    • 2003
  • For RMR and Q rock mass classification at the design and construction stage, evaluation of groundwater condition is usually based upon the experience due to the restriction of available methods. Based on the results of Taejon LNG Pilot Cavern which acquire joint water pressure, inflow rate of ground water and hydraulic conductivity model, estimates from numerical analysis and analytical solutions were compared to verify each evaluation method. As the result, the Raymer(2001) approach was found to be efficient for estimating inflow rate and corresponding value.

Modification of the Sloan치s Substepping Scheme for the Numerical Stress Integration of Elasto-plastic Constitutive Models (탄소성 구성 모델의 수치 응력 적분을 위한 단계분할 절차에 관한 연구)

  • 김범상;정충기
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.129-140
    • /
    • 1998
  • Elasto-plastic finite element analysis of geotechnical boundary value problems necessitate the stress integration for the known strain increments. For the elasto-plastic constitutive model, the stress integration is generally achieved by numerical schemes, because analytical integration is impossible for general strain path. In this case, the accuracy of numerical stress integration has an important role on the overall accuracy of nonlinear finite element solution. In this study, the Sloan's substepping method which is one of explicit integration methods has been adopted and iris applicability has been checked. The unstability and inaccuracy of ifs results initiated from initial stress level were revealed. So. a new modified numerical integration method which employs the basic concept of modified Euler scheme for error control is proposed and accuracy and stability of the solutions are confirmed by triaxial test simulation.

  • PDF

Semi-analytical Method for Predicting Shaft Voltage in Field-excited Synchronous Generators

  • Doorsamy, Wesley;Cronje, Willem A.
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.859-865
    • /
    • 2014
  • This study presents an electromagnetic model for predicting shaft voltages in a 2-pole field-excited synchronous generator. After the first observations on shaft voltages were made more than a century ago, extensive work has been conducted on eliminating, mitigating, and integrating the aforementioned phenomena. Given that emphasis has been placed on modeling shaft- and bearing-induced voltages in AC motors driven by variable frequency drives, similar efforts toward a model that is dedicated to generators are insubstantial. This work endeavors to improve current physical interpretation and prediction methods for shaft-induced voltages in generators through semi-analytical derivation. Aside from the experimental validation of the model, investigations regarding the behavior of shaft voltages under varying machine complexities and operating conditions clarify previous uncertainties regarding these phenomena. The performance of the numerical method is also assessed for application in eccentricity fault diagnosis.

Vibration analysis of concrete foundation armed by silica nanoparticles based on numerical methods

  • Mahjoobi, Mahdi;Bidgoli, Mahmood Rabani
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.547-555
    • /
    • 2019
  • In this study, vibration analysis of a concrete foundation-reinforced by $SiO_2$ nanoparticles resting on soil bed is investigated. The soil medium is simulated with spring constants. Furthermore, the Mori-Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects. Using third order shear deformation theory or Reddy theory, the total potential energy of system is calculated and by means of the Hamilton's principle, the coupled motion equations are obtained. Also, based an analytical method, the frequency of system is calculated. The effects of volume percent and agglomeration of $SiO_2$ nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of system. Results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency of structure is increased.

Nonlinear vibration of thin circular sector cylinder: An analytical approach

  • Pakar, Iman;Bayat, Mahmoud;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.133-143
    • /
    • 2014
  • In this paper, we try to prepare an accurate analytical solution for solving nonlinear vibration of thin circular sector cylinder. A new approximate solution called variational approach is presented and correctly applied to the governing equation of thin circular sector cylinder. The effect of important parameters on the response of the problem is considered. Some comparisons have been presented between the numerical solution and the present approach. The results show an excellent agreement between these methods. It has been illustrated that the variational approach can be a useful method to solve nonlinear problems by considering the effects of important parameters.

Performance Evaluation of Registration Schemes in Mobile Communication Network: Movement-Based Registration and Distance-Based Registration (이동통신망에서 위치등록 방법의 성능평가: 이동기준 위치등록과 거리기준 위치등록)

  • Ryu, Byung-Han;Baek, Jang-Hyun
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.401-408
    • /
    • 2002
  • An efficient mobility management for mobile stations plays an important role in mobile communication network. In this study, we consider movement-based registration(MBR) and distance-based registration(DBR). Analytical models based on 2-dimensional random walk in hexagonal cell configuration are considered to analyze the performance of MBR and DBR. Especially, we focus on the derivation of the registration cost of DBR scheme by using two analytical methods and then show that DBR always outperforms MBR. Numerical results are provided to demonstrate optimal condition under various circumstances.

Deflection Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 재령종속적 처짐해석)

  • 성원진;김정현;윤성욱;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.427-432
    • /
    • 2003
  • An analytical method to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the box girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The one dimensional finite element analysis results are compared with those of the three dimensional finite element analysis and the analytical method based on the sectional analysis. Close agreement is observed among the three methods.

  • PDF