DOI QR코드

DOI QR Code

Vibration analysis of concrete foundation armed by silica nanoparticles based on numerical methods

  • Received : 2018.12.13
  • Accepted : 2019.01.27
  • Published : 2019.03.10

Abstract

In this study, vibration analysis of a concrete foundation-reinforced by $SiO_2$ nanoparticles resting on soil bed is investigated. The soil medium is simulated with spring constants. Furthermore, the Mori-Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects. Using third order shear deformation theory or Reddy theory, the total potential energy of system is calculated and by means of the Hamilton's principle, the coupled motion equations are obtained. Also, based an analytical method, the frequency of system is calculated. The effects of volume percent and agglomeration of $SiO_2$ nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of system. Results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency of structure is increased.

Keywords

References

  1. Arbabi, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Concrete columns reinforced with zinc oxide nanoparticles subjected to electric field: Buckling analysis", Struct. Eng. Mech., 24(5), 431-446.
  2. Bowles, J.E. (1988), Foundation Analysis and Design, McGraw Hill, Inc.
  3. Chen, X.L., Liu, G.R. and Lim, S.P. (2003), "An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape", Compos. Struct., 59(2), 279-289. https://doi.org/10.1016/S0263-8223(02)00034-X
  4. Dai, K.Y., Liu, G.R., Lim, K.M. and Chen, X.L. (2004), "A meshfree method for static and free vibration analysis of shear deformable laminated composite plates", J. Sound Vibr., 269(3-5), 633-652. https://doi.org/10.1016/S0022-460X(03)00089-0
  5. Dutta, G., Panda, S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Comput. Math., 3(3), 2573-2592. https://doi.org/10.1007/s40819-016-0256-6
  6. Ehsani, A., Nili, M. and Shaabani, K. (2017), "Effect of Nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing fly ash", KSCE J. Civil Eng., 21(5), 1854-1865. https://doi.org/10.1007/s12205-016-0853-2
  7. Fathi, M., Yousefipour, A. and Hematpoury Farokhy, E. (2017), "Mechanical and physical properties of expanded polystyrene structural concretes containing micro-silica and nano-silica", Constr. Build. Mater., 136, 590-597. https://doi.org/10.1016/j.conbuildmat.2017.01.040
  8. Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N. and Soares, C.M.M. (2010), "Analysis of plates on Pasternak foundations by radial basis functions", Comput. Mech., 46(6), 791-803. https://doi.org/10.1007/s00466-010-0518-9
  9. Jafarian Arani, A. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  10. Jo, B.W., Kim, C.H. and Lim, J.H. (2007), "Investigations on the development of powder concrete with nano-SiO2 particles", KSCE J. Civil Eng., 11(1), 37-42. https://doi.org/10.1007/BF02823370
  11. Kammoun, Z. and Trabelsi, A. (2018), "Mechanical characteristics of a classical concrete lightened by the addition of treated straws", Struct. Eng. Mech., 6(4), 375-386.
  12. Kumar, Y. and Lal, R. (2012), "Vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation", Meccan., 47(4), 893-915. https://doi.org/10.1007/s11012-011-9459-4
  13. Lam, K.Y., Wang, C.M. and He, X.Q. (2000), "Canonical exact solutions for levy-plates on two-parameter foundation using green's functions", Eng. Struct., 22(4), 364-378. https://doi.org/10.1016/S0141-0296(98)00116-3
  14. Mahapatra, T.R. and Panda, S.K. (2016a), "Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: A micromechanical approach", Aerosp. Sci. Technol., 49, 276-288. https://doi.org/10.1016/j.ast.2015.12.018
  15. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016b), "Nonlinear flexural analysis of laminated composite panel under hygrothermo-mechanical loading-a micromechanical approach", Int. J. Comput. Meth., 13(3), 1650015. https://doi.org/10.1142/S0219876216500158
  16. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016c), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., 23(11), 1343-1359. https://doi.org/10.1080/15376494.2015.1085606
  17. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016d), "Geometrically nonlinear flexural analysis of hygro-thermoelastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9
  18. Mantari, J.L. and Granados, E.V. (2016), "An original FSDT to study advanced composites on elastic foundation", Thin Wall. Struct., 107, 80-89. https://doi.org/10.1016/j.tws.2016.05.024
  19. Moradi-Dastjerdi, R., Foroutan, M., Pourasghar, A. and Sotoudeh-Bahreini, R. (2012), "Static analysis of functionally graded carbon nanotube-reinforced composite cylinders by a mesh-free method", Polym. Compos., 33, 2036-2044. https://doi.org/10.1002/pc.22346
  20. Moradi-Dastjerdi, M., Pourasghar, R., Foroutan, A. and Bidram, M. (2013a), "Vibration analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube based on mesh-free method", J. Compos. Mater., 48(15), 1901-1913. https://doi.org/10.1177/0021998313491617
  21. Moradi-Dastjerdi, M., Pourasghar, R. and Foroutan, A. (2013b), "The effects of carbon nanotube orientation and aggregation on vibrational behavior of functionally graded nanocomposite cylinders by a mesh-free method", Acta Mech., 224(11), 2817-2832. https://doi.org/10.1007/s00707-013-0897-z
  22. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurg. Mater., 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  23. Nguyen-Thoi, T., Bui-Xuan, T., Phung-Van, P., Nguyen-Hoang, S. and Nguyen-Xuan, H. (2014), "An edge-based smoothed three-node Mindlin plate element (ES-MIN3) for static and free vibration analyses of plates", KSCE J. Civil Eng., 18(4), 1072-1082. https://doi.org/10.1007/s12205-014-0002-8
  24. Park, M. and Choi, D.H. (2017), "A simplified first-order shear deformation theory for bending, buckling and free vibration analyses of isotropic plates on elastic foundations", KSCE J. Civil Eng., 1-15.
  25. Pourasghar, A. and Kamarian, S. (2013a), "Dynamic stability analysis of functionally graded nanocomposite non-uniform column reinforced by carbon nanotube", J. Vibr. Cont., 21(13), 2499-2508. https://doi.org/10.1177/1077546313513625
  26. Pourasghar, A. and Kamarian, S. (2013b), "Three-dimensional solution for the vibration analysis of functionally graded multiwalled carbon nanotubes/phenolic nanocomposite cylindrical panels on elastic foundation", Polym. Compos., 34(12), 2040-2048. https://doi.org/10.1002/pc.22612
  27. Pourasghar, A., Yas, M.H. and Kamarian, S. (2013), "Local aggregation effect of CNT on the vibrational behavior of fourparameter continuous grading nanotube-reinforced cylindrical panels", Polym. Compos., 34(5), 707-721. https://doi.org/10.1002/pc.22474
  28. Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B: Eng., 99, 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028
  29. Reddy, J.N. (2002), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press.
  30. Secgin, A. and Sarigul, A.S. (2008), "Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: Algorithm and verification", J. Sound Vibr., 315(1-2), 197-211. https://doi.org/10.1016/j.jsv.2008.01.061
  31. Shen, H.S., Yang, J. and Zhang, L. (2001), "Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundations", J. Sound Vibr., 244(2), 299-320. https://doi.org/10.1006/jsvi.2000.3501
  32. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The Effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., 126(3), 250-270. https://doi.org/10.1115/1.1751182
  33. Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda, S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", Mater. Sci. Eng., 178(1), 012026.
  34. Thai, H.T. and Choi, D.H. (2014), "Levy Solution for free vibration analysis of functionally graded plates based on a refined plate theory", KSCE J. Civil Eng., 18(6), 1813-1824. https://doi.org/10.1007/s12205-014-0409-2
  35. Thai, H.T., Park, M. and Choi, D.H. (2013), "A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation", Int. J. Mech. Sci., 73, 40-52. https://doi.org/10.1016/j.ijmecsci.2013.03.017
  36. Ugurlu, B. (2016), "Boundary element method based vibration analysis of elastic bottom plates of fluid storage tanks resting on Pasternak foundation", Eng. Analy. Bound. Elem., 62, 163-176. https://doi.org/10.1016/j.enganabound.2015.10.006
  37. Whitney, J.M. (1987), Structural Analysis of Laminated Anisotropic Plates, Technomic Publishing Company Inc., Lancaster, Pennsylvania, U.S.A.
  38. Yas, M.H., Pourasghar, A., Kamarian, S. and Heshmati, M. (2013), "Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube", Mater. Des., 49, 583-590. https://doi.org/10.1016/j.matdes.2013.01.001
  39. Zamani, M., Fallah, A. and Aghdam, M.M. (2012), "Free vibration analysis of moderately thick trapezoidal symmetrically laminated plates with various combinations of boundary conditions", Eur. J. Mech. A/Sol., 36, 204-212. https://doi.org/10.1016/j.euromechsol.2012.03.004
  40. Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behavior of embedded concrete columns reinforced with $SiO_{2}$ nanoparticles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043
  41. Zhang, W., Li, H. and Zhang, Y. (2018), "Effect of porosity on frost resistance of Portland cement pervious concrete", Adv. Concrete Constr., 6(4), 363-373. https://doi.org/10.12989/ACC.2018.6.4.363
  42. Zhong, Y. and Yin, J.H. (2008), "Free vibration analysis of a plate on foundation with completely free boundary by finite integral transform method", Mech. Res. Commun., 35(4), 268-275. https://doi.org/10.1016/j.mechrescom.2008.01.004
  43. Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundation", Int. J. Numer. Meth. Eng., 59(10), 1313-1334. https://doi.org/10.1002/nme.915