• 제목/요약/키워드: amorphous Fe

검색결과 574건 처리시간 0.023초

가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu 분말과의 복합화 및 SPS 거동 (I) - I. 가스분무 및 복합화 - (Production of Fe Amorphous Powders by Gas-atomization Process and Subsequent Spark Plasma Sintering of Fe Amorphous-ductile Cu Composite Powders Produced by Ball-milling Process (I) - I. Gas Atomization and Production of Composite Powders -)

  • 류호진;임재현;김지순;김진천;김휘준
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.316-325
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 $\mu$m in size has a fully amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 $\mu$m showed that the glass transition, T$_g$, onset crystallization, T$_x$, and super-cooled liquid range $\Delta$T=T$_x$-T$_g$ were 512, 548 and 36$^{\circ}C$, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm.

Effects of Metalloid Elements on the Mechanical Properties of Fe-Based Bulk Amorphous Alloys

  • Kim, Yongchan;Hwang, Byoungchul
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.671-675
    • /
    • 2016
  • In this study, the glass-forming ability and mechanical properties of newly developed Fe-Mn-Cr-Mo-B-C-P-Si-Al bulk amorphous alloys were investigated, and metalloid elements such as B, C, and P were found to have a strong influence on the properties of the Fe-based amorphous alloys. When the total metalloid content (B, C, and P) is less than 5 %, only the crystal phase is formed, but the addition of more than 10 % metalloid elements enhances the glass forming ability. In particular, the alloys with 10 % metalloid content exhibit the best combination of very high compressive strength (~2.8 GPa) and superior fracture elongation (~30 %) because they consist of crystal/amorphous composite phases.

Capping층 재료에 따른 CoFeB/MgO/CoFeB 자기터널접합의 미세구조와 자기저항 특성 (Microstructural and Magnetic Properties of CoFeB/MgO/CoFeB Based Magnetic Tunnel Junction Depending on Capping Layer Materials)

  • 정하창;이성래
    • 한국자기학회지
    • /
    • 제17권4호
    • /
    • pp.162-165
    • /
    • 2007
  • 본 연구에서는 CoFeB/MgO/CoFeB 구조를 가지는 자기터널접합에서 capping층 재료의 종류와 열처리 시간에 따른 비정질 top CoFeB 자성층의 결정화 상태 및 자기터널접합의 자기적 특성 변화에 대한 연구결과를 비교 분석 하였다. Hcp(Hexagonal close-packed)의 결정구조를 가지는 Ru(002)를 capping층 재료로 사용한 자기터널접합 박막의 경우에는 열처리 이후 Ru과 인접한 부분의 top CoFeB이 bcc-CoFe(110)로 성장하는 반면, TiAl과 ZrAl을 capping층 재료로 사용한 자기터널접합의 경우는 열처리 이후 top CoFeB이 MgO와 epitaxial하게 bcc-CoFe(002)로 결정성장 하였다. 이로 인해 Ru을 사용한 자기터널접합의 터널자기 저항비(46.7%)보다 약 1.5배 높은 터널자기저항비(TiAl: 71.8%, ZrAl: 72.7%)를 나타내었다.

Spontaneous Hall Effect in Amorphous Tb-Fe and Sm-Fe Thin films

  • Kim, T. W.;S. H. Lim;R. J. Gambino
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2000년도 International Symposium on Magnetics The 2000 Fall Conference
    • /
    • pp.337-345
    • /
    • 2000
  • The spontaneous Hall effect in amorphous Tb-Fe and Sm-Fe thin films, which possess excellent magnetic softness, is investigated in this work to seek a possibility of practical applications of these thin films as sensors. The resistivity of Tb-Fe thin films ranges from 180 to 250 Ωcm as the Tb content varies from 35 to 46 at. %. Tb-Fe thin films show negative Hall resistivity ranging from - 7.3 to - 5.0 Ωcm in the same composition range, giving the normalized resistivity ratio in the range of -4.1 to -2.0 %. On the other hand, the resistivity of Sm-Fe thin films ranges from 150 to 166 Ωcm as the Sm content varies from 22 to 31 at. %. Sm-Fe thin films show positive Hall resistivity which varies from 7.1 to 2.8 Ωcm in the same composition range, giving the normalized resistivity ratio in the range of 4.8 to 1.7 %. These values are significantly high compared with the values of other R-T alloys, Tb-Co alloys for example, where the highest reported value is 2.5 %. Between the two different sets of samples, Tb-Fe thin films with perpendicular anisotropy are considered to be more suitable for practical applications, since saturation is reached at a los magnetic field, approximately 2 kOe in a Tb$\sub$35.1/ Fe$\sub$64.9/ thin film, for example.

  • PDF

가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu분말과의 복합화 및 SPS 거동 (II) - II. 복합분말의 SPS와 특성 - (Production of Fe Amorphous Powders by Gas-Atomization Process and Subsequent Spark Plasma Sintering of Fe amorphous-ductile Cu Composite Powder Produced by Ball-milling Process (II) - II. SPS Behaviors of Composite Powders and their Characteristics -)

  • 김진천;김지순;김휘준;김정곤
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.326-335
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The Fe-based amorphous powders and the Fe-Cu composite powders were compacted by a spark plasma sintering (SPS) process. Densification of the Fe amorphous-Cu composited powders by spark plasma sintering of was occurred through a plastic deformation of the each amorphous powder and Cu phase. The SPS samples milled by AGO-2 under 500 rpm had the best homogeneity of Cu phase and showed the smallest Cu pool size. Micro-Vickers hardness of the as-SPSed specimens was changed with the milling processes.

비결정질철산화물 원위치 형성을 통한 비소오염토양 안정화 및 X선 분광분석법의 활용에 대한 연구 (Study on Stabilization of Arsenic in Soil through in situ Formation of Amorphous Fe Oxides and use of X-ray Absorption Spectroscopy)

  • 박진희;정현용;김상현;안진성;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권2호
    • /
    • pp.9-15
    • /
    • 2020
  • This study was conducted to investigate the in situ formation of amorphous Fe oxides as a stabilization technology in As-contaminated soil. After addition of ferric nitrate and the neutralizing agent, most of extractable fractions of As in soil (i.e., SO42- and PO43--extractable As) was converted into As bound to amorphous Fe oxides. In addition, results of solubility bioavailability research consortium (SBRC) test indicated that a significant amount of As in untreated soil changed to a non-bioaccessible form after stabilization. The reason was attributed to the newly formed amorphous Fe oxides in the stabilized soil, which was confirmed by linear combination of fitting (LCF) using X-ray absorption spectroscopy (XAS) analysis. Interestingly, after five months of aging of the stabilized soil, ferrihydrite and schwertmannite newly formed in the soil were transformed to crystalline Fe oxides such as goethite, and further decrease in SBRC extractable fraction of As was observed. The results suggest that co-precipitated As with amorphous Fe oxides can be further immobilized with time, due to the crystallization of amorphous Fe oxides.

W35Fe43C22 비정질 합금분말의 결정화 거동 (Crystallization behavior of W35Fe43C22 amorphous alloy powders)

  • 권영준;유정선;박수근;이근효;조기섭
    • 열처리공학회지
    • /
    • 제31권4호
    • /
    • pp.165-170
    • /
    • 2018
  • W, Fe, and carbon powders were mechanical alloyed to produce $W_{35}Fe_{43}C_{22}$ ternary alloy powders containing nanocrystal W embedded within amorphous matrix. When the powder samples were heated to the primary crystallization temperature of $735^{\circ}C$, most parts of their amorphous region were fully crystallized to [W,Fe]-rich $M_6C$ carbides. Interestingly, a little portion of the carbides changes to stoichiometric line compounds ($M_{12}C$ and $W_6Fe_7$) and a solution phase (Fe-rich bcc), and remaining parts of the crystallites were amorphized again. The resulting microstructure was retained even by cyclic heating between room temperature of $1,200^{\circ}C$, and thus we found that the amorphous structure can be irreversibly formed at above glass transition temperature.

자계중 열처리된 FeCoSiB 아몰퍼스박막의 자기적 특성 (Magnetic Properties of FeCoSiB Amorphous Films Annealed in Magnetic field)

  • 신광호;김영학;사공건
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1305-1309
    • /
    • 2003
  • To utilize FeCoSiB amorphous films for magnetoelastic sensors, the temperature dependency of magnetization (M-T curve) and the magnetization properties of the amorphous films were investigated in this study. As the amount of cobalt In the films increased, the Curie temperature decreased but the crystallization temperature increased. In addition to this, the crystallization temperature was lower than the Curie temperature in the film containing 20 at% cobalt. The optimized annealing condition was set up by analyzing the H-T curve. And then, the amorphous film that has excellent magnetic properties and uni-axal anisotropy could be prepared for construction of the magnetoelastic sensor devices. The coercive force of the film was below 0.5 Oe and the anisotripic field was about 5 Oe.

Fe-B-Si-Ge 비정질 리본의 자기적 특성 연구 (The Study on The Magnetic Properties of Amorphous Fe-B-Si-Ge Ribbons)

  • 민복기
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권2호
    • /
    • pp.113-118
    • /
    • 1997
  • For the amorphous F $e_{78}$ $B_{13}$S $i_{9-x}$G $e_{x}$ alloy, thermal analysis and measurements of the magnetic properties were carried out. As the content of Ge increased, the crystallization temperature was decreased and the Curie temperature was increased, and the tendencies were almost linear. The core loss of the amorphous alloy for x=1.7, field annealed at optimized condition, was 0.057 W/kg(l.0T, 60Hz), which was about 30% lower than that of no Ge added amorphous alloy (basic composition). Such a low core loss characteristics was thought to be caused by the lower coercive force and good squareness of B-H loop of the alloy.y.y.

  • PDF

$Fe(OH)_2-BaCO_3$$Fe(OH)_3-BaCO_3$ 의 공심물로부터 Ba-Ferrite 생성과정의 비교 (Comparision between Synthesis Processes of Ba-Ferrite from Coprecipitates $Fe(OH)_2-BaCO_3$ and $Fe(OH)_3-BaCO_3$)

  • 김태옥
    • 한국세라믹학회지
    • /
    • 제19권3호
    • /
    • pp.223-228
    • /
    • 1982
  • For the preparation of ferroxidure BaO.5.5 $Fe_2O_3$ with high coercive force, the green and calcined coprecipitates, which were obtained by neutralizing the mixed salt solution $FeCl_2-BaCl_2$ and $FeCl_3-BaCl_2$ with alkali solution $NaOH-Na_2CO_3$, were investigated about the thermal reaction, crystal growth, and the magnetic properties of the sintered specimens. The very single-domain crystallites of Ba-ferrite with high coercive force are formed from the coprecipitate of amorphous $Fe(OH)_3$ and amorphous $BaCO_3$ at lower temperature than that of subnucleus crystalline $\delta$-FeOOH and amorphous $BaCO_3$.

  • PDF