DOI QR코드

DOI QR Code

Crystallization behavior of W35Fe43C22 amorphous alloy powders

W35Fe43C22 비정질 합금분말의 결정화 거동

  • Kwon, Young Jun (School of Advanced Materials Engineering, Kookmin University) ;
  • Yoo, Jung Sun (School of Advanced Materials Engineering, Kookmin University) ;
  • Park, Soo Keun (Korea Institute of Industrial Technology) ;
  • Lee, Keun Hyo (Korea Institute of Industrial Technology) ;
  • Cho, Ki Sub (School of Advanced Materials Engineering, Kookmin University)
  • 권영준 (국민대학교 신소재공학부) ;
  • 유정선 (국민대학교 신소재공학부) ;
  • 박수근 (한국생산기술연구원) ;
  • 이근효 (한국생산기술연구원) ;
  • 조기섭 (국민대학교 신소재공학부)
  • Received : 2018.06.11
  • Accepted : 2018.07.03
  • Published : 2018.07.30

Abstract

W, Fe, and carbon powders were mechanical alloyed to produce $W_{35}Fe_{43}C_{22}$ ternary alloy powders containing nanocrystal W embedded within amorphous matrix. When the powder samples were heated to the primary crystallization temperature of $735^{\circ}C$, most parts of their amorphous region were fully crystallized to [W,Fe]-rich $M_6C$ carbides. Interestingly, a little portion of the carbides changes to stoichiometric line compounds ($M_{12}C$ and $W_6Fe_7$) and a solution phase (Fe-rich bcc), and remaining parts of the crystallites were amorphized again. The resulting microstructure was retained even by cyclic heating between room temperature of $1,200^{\circ}C$, and thus we found that the amorphous structure can be irreversibly formed at above glass transition temperature.

Keywords

References

  1. M. C. Hogwood, in: A. Bose, R.J. Dowding (Eds.): Tungsten and Tungsten Alloys-1992, MPIF, Princeton, NJ (1992) 325.
  2. H. J. Ryu, S. H. Hong, and W. H. Baek : Mater. Sci. Eng., A. 291 (2000) 91. https://doi.org/10.1016/S0921-5093(00)00968-0
  3. Couque, Herve, Guy Nicolas, and Claude Altmayer : Int. J. Impact Eng. 34 (2007) 412. https://doi.org/10.1016/j.ijimpeng.2005.12.003
  4. Liu, Jinxu, Li Shukui, Zhou Xiaoqing, Zhang Zhaohui, Zheng Haiyun, and Wang Yingchun : Scr. Mater. 59 (2008) 1271. https://doi.org/10.1016/j.scriptamat.2008.08.036
  5. Magness, Lee S : Mech. Mater. 17 (1994) 147. https://doi.org/10.1016/0167-6636(94)90055-8
  6. D. -K. Kim, S. H. Lee, and W. H. Baek : Mater. Sci. Eng., A. 249 (1998) 197. https://doi.org/10.1016/S0921-5093(98)00565-6
  7. S. P. Andrew, R. D. Caligiuru, and L. E. Eiselstein : Tungsten and Tungsten Alloys-Recent Advances, TMS, Warrendale, PA (1991) 141.
  8. H. J. Ryu, S. H. Hong, and W. H. Baek : J. Mater. Process. Technol. 63 (1997) 292. https://doi.org/10.1016/S0924-0136(96)02638-6
  9. H. H. Liebermann : Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, Dekker, New York (1993).
  10. T. Courtney and Z. Wang : Scr. Metall. Mater. 27 (1992) 777. https://doi.org/10.1016/0956-716X(92)90505-9
  11. A. De La Torre, S. Bruque, M. Aranda : J. Appl. Crystallogr. 34 (2001) 196. https://doi.org/10.1107/S0021889801002485
  12. He, Jianhong, Michael Ice, Enrique J. Lavernia, and Steven Dallek : Metall. Mater. Trans. A, 31 (2000) 541. https://doi.org/10.1007/s11661-000-0289-6