• 제목/요약/키워드: aluminium dross

검색결과 15건 처리시간 0.025초

알루미늄 폐드로스로부터 수처리응집제용 염화알루미늄 제조 (Preparation of PAC for Water Treatment Chemicals Using Waste Aluminum Dross)

  • 박형규;최영윤;엄형춘;배동수
    • 자원리싸이클링
    • /
    • 제15권5호
    • /
    • pp.52-56
    • /
    • 2006
  • 국내 알루미늄 재생업체에서 알루미늄 용해시 발생되는 알루미늄 폐드로스를 사용하여 수처리응집제로 사용되는 폴리염화알루미늄(PAC: Poly Aluminium Chloride)를 제조하였다. 알루미늄 폐드로스를 염산과 반응시켜 폐드로스 중에 잔류하는 금속알루미늄을 PAC용액으로 제조함으로써 수산화알루미늄과 염산을 원료로 사용하여 PAC를 제조하는 종래의 방법에 비해 제품의 원료비를 줄일 수 있고, 알루미늄 폐드로스를 재활용함으로써 매립 등으로 폐기시켜야 할 폐드로스의 양을 줄이는 효과가 있다.

Influence Study of Aluminum Dross on Polypropylene Matrix-Polymer Composite Material Properties

  • Kongchatree, Khanob;Yaemphuan, Paiboon;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.138-144
    • /
    • 2015
  • This paper is aimed to study the influence of aluminium dross from Thai aluminum casting factory on polypropylene matrix-polymer composite material properties. The summarized experimental results are as follows. An increase in the amount of aluminum dross polymer composite material affected to increase hardness, modulus of elasticity and abrasion resistance. However, the increase of the aluminum dross had no effects to change the yield strength and the melting temperature of the polymer composite material. The aluminum dross also affected to form the crystallinity at $117-122^{\circ}C$ and directly increased the rigid property of the composite materials. The microstructure examination revealed that the aluminum dross was located in a polymer matrix and affected to increase the dark colour of the polymer composite material.

파쇄 기구에 따른 알루미늄 캔 재자원화 공정 중 발생한 블랙 드로스 내 알루미늄 회수에 관한 연구 (Study on the Recovery of Metallic Aluminum in Black Dross generated from the Used Beverage Cans (UBC) Recycling Process with Crushing Mechanism)

  • 한철웅;손성호;안병두;김대근;이만승;김용환
    • 자원리싸이클링
    • /
    • 제26권4호
    • /
    • pp.71-78
    • /
    • 2017
  • 본 연구는 UBC 재활용 용해공정 중 발생한 블랙 드로스 내 금속 알루미늄을 회수하기 위해 압축 및 충격 파쇄 공정에 따른 알루미늄 회수율에 대하여 조사하였다. 초기 알루미늄 블랙 드로스는 대부분 구형의 형상으로 약 10~40 mm 크기였다. 또한 블랙 드로스의 주요 구성 성분은 할라이트(NaCl), 실바이트(KCl), 스피넬($MgAl_2O_4$) 및 알루미나($Al_2O_3$)로 나타났다. 알루미늄 금속의 회수율 시험은 서로 다른 파쇄 기구를 갖는 죠 크러셔와 햄머밀 공정으로 진행하였다. 파쇄 기구에 따른 알루미늄 금속 회수 실험결과, 죠 크러셔 공정은 금속과 비금속 혼합물을 분리할 수 있었으나 햄머밀 공정은 금속과 비금속의 분리가 어려운 것으로 관찰되었으며 알루미늄 블랙드로스 내 금속 알루미늄을 회수하기 위한 파쇄 공정은 죠 크러셔 공정이 더 효과적인 것으로 보여진다.

알루미늄 폐드로스를 재활용(再活用)한 Alum과 Poly Aluminum Chloride 제조(製造) 연구(硏究) (Preparation of Alum and Poly Aluminum Chloride Using Waste Aluminum Dross)

  • 박형규;이후인;최영윤
    • 자원리싸이클링
    • /
    • 제16권5호
    • /
    • pp.3-7
    • /
    • 2007
  • 알루미늄 지금 및 스크랩 용해시 발생되는 알루미늄 폐드로스를 사용하여 황산알루미늄(Alum)과 폴리염화알루미늄(pooly Aluminium Chloride: PAC)을 제조하였다. 알루미늄 폐드로스를 황산과 반응시켜 폐드로스 중에 잔류하는 금속알루미늄을 용액 중으로 침출시켜 황산알루미늄 용액으로 제조하였으며, 알루미늄 폐드로스를 염산과 반응시켜 PAC 용액으로 제조하여 수처리응집제로 재활용하고자 하였다. 이와 같이 알루미늄 폐드로스를 재활용함으로써 수산화알루미늄을 원료로 사용하여 황산알루미늄과 PAC를 제조하는 종래의 방법에 비해 제품의 원료비를 줄일 수 있고, 매립 등으로 폐기시켜야 할 폐드로스의 양을 줄이는 효과가 있었다.

알루미늄 드로스를 이용한 무기 발포재 제조 (Preparation of Formed Ceramic materials by Recycling of Aluminium Dross)

  • 박제신;박형규;장대규
    • 자원리싸이클링
    • /
    • 제10권4호
    • /
    • pp.42-47
    • /
    • 2001
  • 알루미늄 드로스와 장석을 이용하여 무기발포재의 제조 가능성을 검토하여 폐기물인 알루미늄 드로스의 재활용 및 자원화의 다양성을 제시하기 위한 실험을 행하였다. 소성한 발포재의 경우 장석은 소성온도에서 용해되어 비정질상으로 전이하고 드로스 중의 성분들이 Spinel($MgA1_2$$O_4$)을 형성한다. 장석 55 wt%, 드로스 40 wt%, 벤토나이트 5 wt% 시료의 경우 소성온도 $1220^{\circ}C$에서 소성시간이 증가할수록 밀도는 0.91에서 0.65까지 감소하고, 흡수율은 약 2.5에서 1.7%의 범위의 값을 나타냈다. $1220^{\circ}C$에서 30분 소성할 경우 굽힘강도는 10.8 MPa이며, 열전도도는 0.34 W/m.K로서 최대치를 나타냈다.

  • PDF

물과 수산화나트륨용액에 의한 블랙 드로스의 처리 (Treatment of Black Dross with Water and NaOH Solution)

  • 행위동;안병두;이만승
    • 자원리싸이클링
    • /
    • 제26권3호
    • /
    • pp.53-60
    • /
    • 2017
  • 블랙드로스에는 금속 알루미늄, 알루미나, 실리카, 산화마그네슘, 가용성 염 및 미량 성분이 함유되어 있다. 블랙드로스를 사용가능한 재료로 전환시키기 위해서는 실리카의 양을 조절하는 것이 중요하다. 먼저 가용성 염인 염화나트륨과 염화칼륨은 $50^{\circ}C$에서 물에 용해되었다. 물세척 후 잔사에 함유된 실리카, 알루미나, 산화마그네슘 및 산화타이타늄의 침출거동을 NaOH의 농도와 반응온도를 변화시키며 조사하였다. 반응온도 $25{\sim}95^{\circ}C$에서 알루미나의 침출율은 온도에 비례하나 실리카의 침출의 경우에는 최적 온도가 존재하였다. 한편 2~6 M의 NaOH용액에 산화마그네슘은 전혀 용해되지 않았다. 5 M의 NaOH와 $95^{\circ}C$에서 알루미나와 실리카의 침출율은 각각 80과 68%이었다.

합금화 용융아연 도금욕의 불순물 제거에 관한 연구 (A study on removing impurities in the zind bate for hot dip galvannealed coatings)

  • 진영구
    • 한국표면공학회지
    • /
    • 제31권6호
    • /
    • pp.371-378
    • /
    • 1998
  • The zind bate contaminated in the hot dip galvannealed operation was successfully by appling the dross formation mechanism ; the Fe content was lowered from 0.028% to 0.011% and the dress size was decreased from 15~20$\mu\textrm{m}$ to under 3$\mu\textrm{m}$. The cooled metal from CGL zinc bath during operation of the galvannealed steel strip was remelted in graphite crucible at the lab and agitated after increasing Al content from 0.14% to 0.16% with decreasing the molten metal temperature from $470^{\circ}C$to $445^{\circ}C$. The agitating was done by agitator and nitrogen. The molten was analyed by SEM and EDS. It was considered that the Fe and the bottom dross($FeZN_7$) could react with aluminium to from the float dress($Fe_2Al_5$) according to the molten metal temperature down and the float dress rise to the surface of the zine bath. So the Fe and dross in the bath could be romoved out of the bath. It was confirmed that the proper purication conditions of GA zine bath is 0.02% of Al increasing, bath temperature down from $460^{\circ}C$ to $450^{\circ}C$and agitator and nitrogen.

  • PDF

알루미늄 재활용 소재를 이용한 내화재용 Mayenite 합성 연구 (A Study on Synthesis of Mayenite by Using Recycled Aluminium Resource for Application in Insulating Material)

  • 임병용;강유빈;주소영;김대근
    • 자원리싸이클링
    • /
    • 제29권6호
    • /
    • pp.65-72
    • /
    • 2020
  • 블랙 드로스는 알루미늄을 재활용하는 과정 중에 플럭스 사용에 의해 발생되는 짙은 회색의 드로스로서, NaCl, KCl, Al2O3, MgO 등이 포함되어 있다. 블랙 드로스는 용해(dissolution) 공정을 통하여 용해성 물질(NaCl, KCl)과 불용해성 물질(Al2O4, MgO)로 분리가 가능하다. 이중 용해성 물질의 경우 Salt flux로 재활용이 가능하며, Al2O3, MgO의 경우 합성 공정을 통하여 다양한 세라믹 소재로 업사이클링이 가능하다. 본 연구에서는 블랙 드로스로부터 회수한 Al2O3, MgO를 이용하여 Mayenite를 합성 하였으며, 배합 비율 및 반응 온도 조건에 따른 합성을 실시하였다. 블랙 드로스(spinel)와 CaCO3를 이용하여 Mayenite를 합성할 시 700 ℃에서 Mg0.4Al2.4O4, CaO로 변하며, 800 ℃ 이후부터 Ca12Al14O33(Mayenite)으로 변하는 것을 확인하였다. 배합 조건에는 CaCO3 함량이 증가함에 따라 Mayenite XRD 피크가 증가하며, Mg0.4Al2.4O4 XRD 피크는 감소하는 것을 확인하였다. 합성된 분말의 BET 분석 결과 Mayenite가 생성되는 과정에서 미세한 입자가 성장되고 응집됨에 따라 비표면적은 감소하는 거동을 보였다.