DOI QR코드

DOI QR Code

A Study on Synthesis of Mayenite by Using Recycled Aluminium Resource for Application in Insulating Material

알루미늄 재활용 소재를 이용한 내화재용 Mayenite 합성 연구

  • Im, Byoungyong (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Kang, Yubin (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Joo, Soyeong (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Dae-Guen (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE))
  • 임병용 (고등기술연구원 융합소재연구센터) ;
  • 강유빈 (고등기술연구원 융합소재연구센터) ;
  • 주소영 (고등기술연구원 융합소재연구센터) ;
  • 김대근 (고등기술연구원 융합소재연구센터)
  • Received : 2020.11.09
  • Accepted : 2020.12.14
  • Published : 2020.12.30

Abstract

Black dross is a dark gray dross generated during the aluminum recycling process that uses flux, and contains NaCl, KCl, Al2O3, MgO, etc. Black dross is separated into soluble substances (NaCl, KCl) and insoluble substances (Al2O4, MgO) through the dissolution process. Soluble materials can be reused as salt flux, and Al2O3 and MgO can be upcycled to various ceramic materials through the synthesis process. In this study, Mayenite was synthesized using Al2O3 and MgO recovered from black dross, and the synthesis was performed according to the mixing ratio and reaction temperature. It was confirmed that when Mayenite was synthesized using black dross (spinel) and CaCO3, precursors were changed to Mg0.4Al2.4O4 and CaO at 700 ℃, and to Ca12Al14O33 (Mayenite) after 800 ℃. In the mixing conditions experiment, it was confirmed that the Mayenite XRD peak increased with increase of the CaCO3 content, and the Mg0.4Al2.4O4 XRD peak decreased. As a result of the BET analysis of the synthesized powder, the surface area decreased as the fine particles were grown and agglomerated in the process of generating mayenite.

블랙 드로스는 알루미늄을 재활용하는 과정 중에 플럭스 사용에 의해 발생되는 짙은 회색의 드로스로서, NaCl, KCl, Al2O3, MgO 등이 포함되어 있다. 블랙 드로스는 용해(dissolution) 공정을 통하여 용해성 물질(NaCl, KCl)과 불용해성 물질(Al2O4, MgO)로 분리가 가능하다. 이중 용해성 물질의 경우 Salt flux로 재활용이 가능하며, Al2O3, MgO의 경우 합성 공정을 통하여 다양한 세라믹 소재로 업사이클링이 가능하다. 본 연구에서는 블랙 드로스로부터 회수한 Al2O3, MgO를 이용하여 Mayenite를 합성 하였으며, 배합 비율 및 반응 온도 조건에 따른 합성을 실시하였다. 블랙 드로스(spinel)와 CaCO3를 이용하여 Mayenite를 합성할 시 700 ℃에서 Mg0.4Al2.4O4, CaO로 변하며, 800 ℃ 이후부터 Ca12Al14O33(Mayenite)으로 변하는 것을 확인하였다. 배합 조건에는 CaCO3 함량이 증가함에 따라 Mayenite XRD 피크가 증가하며, Mg0.4Al2.4O4 XRD 피크는 감소하는 것을 확인하였다. 합성된 분말의 BET 분석 결과 Mayenite가 생성되는 과정에서 미세한 입자가 성장되고 응집됨에 따라 비표면적은 감소하는 거동을 보였다.

Keywords

References

  1. Korea Public Procurement Service, 2018 : Supply & demand status of the nonferrous metal.
  2. Kim H. K., 2011 : Trend of government support projects in the aluminum material industry, Journal of Korea Foundry Society, 31(6), pp. 326-331. https://doi.org/10.7777/jkfs.2011.31.6.326
  3. Stefano C. and Ciuloio T., 2018 : Preparation and Melting of Scrap in Aluminum Recycling : A Review, Metals, 249(8), pp. 47-62.
  4. KR Patent No. 10-1735425, 2017 : System and method for aluminium black dross recycling.
  5. H. Amini Mashhadi,. A. Moloodi, M. Golestanipour, and E. Z. V. Karimi, 2009 : Recycling of aluminium alloy turning scrap via cold pressing and melting with salt flux, Journal of Materials Processing Technology, 209, pp.3138-3142. https://doi.org/10.1016/j.jmatprotec.2008.07.020
  6. Han C. W., Son S. W., Ahn B. D., Kim D. G, Lee M. S., and Kim Y. H., 2017 : Study on the Recovery of Metallic Aluminum in Black Dross generated from the Used Beverage Cans (UBC) Recycling Process with Crushing Mechanism, Journal of Korean Institute of Resources Recycling, 26(4), pp.71-78. https://doi.org/10.7844/kirr.2017.26.4.71
  7. Kang Y. B., Im B. Y., Kim D. G., Lee C. G., Ahn B. D., .Kim Y. H., and Lee .M. S., 2018 : A Study of Recycling Process to Recovery Valuable Resources from Aluminum Black Dross, Journal of Korean Institute of Resources Recycling, 27(5), pp.61-68. https://doi.org/10.7844/KIRR.2018.27.5.61
  8. Song. S. J., and Lee .M. S., 2019 : Selective Adsorption of Si(IV) onto Hydrotalcite from Alkali Leaching Solution of Black Dross, Journal of Korean Institute of Resources Recycling, 28(2), pp.54-61. https://doi.org/10.7844/KIRR.2019.28.2.54
  9. Kang Y. B., Basudev. S., Im, B. Y., Yoon J. H., Park K. H., Lee C. G. and Kim D. G. 2019 : Synthesis of Zeolite Using Aluminum Dross and Waste LCD Glass Powder: A Waste to Waste Integration Valorization Process, Metals, 9(12), pp.1240-1248. https://doi.org/10.3390/met9121240
  10. Mostafa. M., Ali A., Peng D., and Nabil B., 2019 : Green template-free synthesis and characterization of mesoporous alumina as a high value-added product in aluminum black dross recycling strategy, Journal of Alloys and Compounds, 792, pp.161-169. https://doi.org/10.1016/j.jallcom.2019.04.009
  11. Chirakit C., and Somyote K. 2020 : Synthesis of Hercynite from Aluminium Dross at 1550℃: Implication for Industrial Waste Recycling, 977, pp.223-228. https://doi.org/10.4028/www.scientific.net/msf.977.223
  12. Eisinas A., Ruginyte K., Baltakys K., Demcak S., Dambrauskas T., Balintova M., and Stevulova N., 2020 : Cu2+ ION adsorption by synthetic mayenite and its thermal stability, Ceramic International, In press
  13. Abdelali Z., Andrea G., Matthias S., Daniel B., Marc L., and Abdessamad F., 2020 : Investigation of Ca12Al14O33 Mayenite for hydration/dehydration thermochemical energy storage, Journal of Energy Storage, 31, pp.101647-101653 https://doi.org/10.1016/j.est.2020.101647
  14. Chaval S., Chaiwat P., Wattana T., Attaphol K., Ken K., and Chesta R., 2020 : Synthesis, microstructure, multifunctional properties of mayenite Ca12Al14O33 (C12A7) cement and graphene oxide (GO) composites, 10(1), pp. 11077-11095 https://doi.org/10.1038/s41598-020-68073-4
  15. Park H. G, Sung S. K., Park C. G, and Won J. P., 2008 : Influence of a C12A7 mineral-based accelerator on the strength and urability of shotcrete, Cement and Concrete Research, 38, pp.379-385 https://doi.org/10.1016/j.cemconres.2007.09.016
  16. Adriano I., Joaquin M. T., Raffaele C., Antonio P., Antonio E. P., and Federico R., 2018 : A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation, Catalysts, 27(9), pp.27-34
  17. Y. S. Chu, S. H. Park, S. K. Seo, J. W. Park., 2013 : Properties of shrinkage reducing agent and mortar with C12A7-basedSlag and petroleum cokes ash, Journal of the Korean Ceramic Society, 50(5), pp.319-325. https://doi.org/10.4191/kcers.2013.50.5.319
  18. Sanjabi S., and Obeydavi A. 2015 : Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol-gel method, Journal of Alloys and Compounds, 645, pp.535-540 https://doi.org/10.1016/j.jallcom.2015.05.107
  19. Dominika M., Ryszard P., and Klaudia W. 2018 : Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol-gel method, Journal of Thermal Analysis and Calorimetry, 134, pp.1481-1492. https://doi.org/10.1007/s10973-018-7618-8
  20. Nobuaki Y., Yoshiko M., Yoshishige Y., Hideaki N., Cho H. C., Yukimichi T., and Takashi M., 2015 : Synthesis of CaO-SiO2 Compounds Using Materials Extracted from Industrial Wastes, Journal of Inorganic Non-Metallic Materials 5, pp.1-10. https://doi.org/10.4236/ojinm.2015.51001
  21. S. Mahboubi, A. Rajabi, A. Ataie, A. Nozari, P. Amrollahi, 2013 : Synthesis and characterization of nano-crystalline calciumHexaferrite particles by mechano-thermal method, Journal of Superconductivity and Novel Magnetism, 26, pp.1353-1356. https://doi.org/10.1007/s10948-012-2090-3
  22. Chunshan L., Daisuke H., and Kenzi S. 2011 : Synthesis of higher surface area mayenite by hydrothermal method, Materials Research Bulletin, 46, pp.1307-1310. https://doi.org/10.1016/j.materresbull.2011.03.023
  23. Guangyin Zhen, Xueqin Lu, Xiaobo Cheng, Hua Chen, Xiaofei Yan, Youcai Zhao. 2012 : Hydration process of the aluminate 12CaO·7Al2O3-assisted Portlandcementbased solidification/stabilization of sewage sludge, Construction and Building Materials, 30, pp.675-681. https://doi.org/10.1016/j.conbuildmat.2011.12.049