• Title/Summary/Keyword: algorithmic ADC

Search Result 12, Processing Time 0.036 seconds

Design of a Algorithmic ADC for Digital PFC Controller (Digital PFC Controller를 위한 Algorithmic ADC 설계)

  • Jang, Ki-Chang;Kim, Jin-Yong;Hwang, Sang-Hoon;Choi, Joong-Ho
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.343-348
    • /
    • 2012
  • A 11b 100KS/s Algorithmic ADC for Digital PFC controller is proposed. The proposed Algorithmic ADC structure for 11bit resolution is based on a cyclic architecture to reduce chip area and power consumption. The prototype Algorithmic ADC implemented with a 0.18um 1Poly-3Metal CMOS process shows a SNDR 66.7dB and ENOB 10.78bits. And the current consumption is about 780uA at 100KS/s and 5V. The occupied active die area is $0.27mm^2$.

Capacitor Ratio-Independent and OP-Amp Gain-Insensitive Algorithmic ADC for CMOS Image Sensor (커패시터의 비율과 무관하고 OP-Amp의 이득에 둔감한 CMOS Image Sensor용 Algorithmic ADC)

  • Hong, Jaemin;Mo, Hyunsun;Kim, Daejeong
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.942-949
    • /
    • 2020
  • In this paper, we propose an improved algorithmic ADC for CMOS Image Sensor that is suitable for a column-parallel readout circuit. The algorithm of the conventional algorithmic ADC is modified so that it can operate as a single amplifier while being independent of the capacitor ratio and insensitive to the gain of the op-amp, and it has a high conversion efficiency by using an adaptive biasing amplifier. The proposed ADC is designed with 0.18-um Magnachip CMOS process, Spectre simulation shows that the power consumption per conversion speed is reduced by 37% compared with the conventional algorithmic ADC.

A high-speed algorithmic ADC based on Maximum Circuit

  • Chaikla, Amphawan;Pukkalanun, Tattaya;Riewruja, Vanchai;Wangwiwattana, Chaleompun;Masuchun, Ruedee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.73-77
    • /
    • 2003
  • This paper presents a high-speed algorithmic analog-to-digital converter (ADC), which is based on gray coding. The realization method makes use of a two-input maximum circuit to provide a high-speed operation and a low-distortion in the transfer characteristic. The proposed ADC based on the CMOS integrated circuit technique is simple and suitable for implementing a highresolution ADC. The performances of the proposed circuit were studied using the PSPICE analog simulation program. The simulation-results verifying the circuit performances are agreed with the expected values.

  • PDF

A low-power multiplying D/A converter design for 10-bit CMOS algorithmic A/D converters (10비트 CMOS algorithmic A/D 변환기를 위한 저전력 MDAC 회로설계)

  • 이제엽;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.20-27
    • /
    • 1997
  • In this paper, a multiplying digital-to-analog converter (MDAC) circuit for low-power high-resolution CMOS algorithmic A/D converters (ADC's) is proposed. The proposed MDAC is designed to operte properly at a supply at a supply voltge between 3 V and 5 V and employs an analog0domain power reduction technique based on a bias switching circuit so that the total power consumption can be optimized. As metal-to-metal capacitors are implemented as frequency compensation capacitors, opamps' performance can be varied by imperfect process control. The MDAC minimizes the effects by the circuit performance variations with on-chip tuning circuits. The proposed low-power MDAC is implementd as a sub-block of a 10-bit 200kHz algorithmic ADC using a 0.6 um single-poly double-metal n-well CMOS technology. With the power-reduction technique enabled, the power consumption of the experimental ADC is reduced from 11mW to 7mW at a 3.3V supply voltage and the power reduction ratio of 36% is achieved.

  • PDF

A 14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS Algorithmic A/D Converter (14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS 알고리즈믹 A/D 변환기)

  • Park, Yong-Hyun;Lee, Kyung-Hoon;Choi, Hee-Cheol;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.65-73
    • /
    • 2006
  • This work presents a 14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS algorithmic A/D converter (ADC) for intelligent sensors control systems, battery-powered system applications simultaneously requiring high resolution, low power, and small area. The proposed algorithmic ADC not using a conventional sample-and-hold amplifier employs efficient switched-bias power-reduction techniques in analog circuits, a clock selective sampling-capacitor switching in the multiplying D/A converter, and ultra low-power on-chip current and voltage references to optimize sampling rate, resolution, power consumption, and chip area. The prototype ADC implemented in a 0.18um 1P6M CMOS process shows a measured DNL and INL of maximum 0.98LSB and 15.72LSB, respectively. The ADC demonstrates a maximum SNDR and SFDR of 54dB and 69dB, respectively, and a power consumption of 1.2mW at 200KS/s and 1.8V. The occupied active die area is $0.87mm^2$.

An Algorithmic Gray Code ADC Using Triangular function circuit

  • Pukkalanum, T.;Chaikla, A.;Julprap, A.;Julsereewong, P.;Jaruwanawat, A.;Riewruja, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.158.1-158
    • /
    • 2001
  • An algorithmic gray code analog-to-digital converter (ADC), which is based on gray coding, is proposed in this article. The realization method makes use of a MOS triangular function circuit to provide a high-speed operation and low accumulated error. The proposed ADC is simple, small in size and suitable for fabrication using a standard CMOS process. Simulation results showing the performances of the proposed circuit are also included.

  • PDF

A 12b 1kS/s 65uA 0.35um CMOS Algorithmic ADC for Sensor Interface in Ubiquitous Environments (유비쿼터스 환경에서의 센서 인터페이스를 위한 12비트 1kS/s 65uA 0.35um CMOS 알고리즈믹 A/D 변환기)

  • Lee, Myung-Hwan;Kim, Yong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This work proposes a 12b 1kS/s 65uA 0.35um CMOS algorithmic ADC for sensor interface applications such as accelerometers and gyro sensors requiring high resolution, ultra-low power, and small size simultaneously. The proposed ADC is based on an algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. Two versions of ADCs are fabricated with a conventional open-loop sampling scheme and a closed-loop sampling scheme to investigate the effects of offset and 1/f noise during dynamic operation. Switched bias power-reduction techniques and bias circuit sharing reduce the power consumption of amplifiers in the SHA and MDAC. The current and voltage references are implemented on chip with optional of-chip voltage references for low-power SoC applications. The prototype ADC in a 0.35um 2P4M CMOS technology demonstrates a measured DNL and INL within 0.78LSB and 2.24LSB, and shows a maximum SNDR and SFDR of 60dB and 70dB in versionl, and 63dB and 75dB in version2 at 1kS/s. The versionl and version2 ADCs with an active die area of $0.78mm^2$ and $0.81mm^2$ consume 0.163mW and 0.176mW at 1kS/s and 2.5V, respectively.

A 9-bit ADC with a Wide-Range Sample-and-Hold Amplifier

  • Lim, Jin-Up;Cho, Young-Joo;Choi, Joong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.280-285
    • /
    • 2004
  • In this paper, a 9-bit analog-to-digital converter (ADC) is designed for optical disk drive (ODD) servo applications. In the ADC, the circuit technique to increase the operating range of the sample-and-hold amplifier is proposed, which can process the wide-varying input common-mode range. The algorithmic ADC structure is chosen so that the area can be significantly reduced, which is suitable for SoC integration. The ADC is fabricated in a 0.18-$\mu\textrm{m} $ CMOS 1P5M technology. Measurement results of the ADC show that SNDR is 51.5dB for the sampling rate of 6.5MS/s. The power dissipation is 36.3mW for a single supply voltage of 3.3V.

2-bit Flash ADC Based on Current Mode Algorithmic

  • Tipsuwanporn, V.;Chuenarom, S.;Maitreechit, S.;Chuchotsakunleot, W.;Kongrat, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.473-473
    • /
    • 2000
  • This paper presents the 2-bit parallel algorithmic ADC using current mode for parallel method algorithm. It is operated by parallel conversion, 2-bit at each moment, and increase bit numbers by serial connection. The circuit operates in current mode. The comparison ratio can be controlled while working under mode operation. The circuit design used 0.8 ${\mu}{\textrm}{m}$ CMOS technology which capable to convert 2-bit in 50 ns, power consumed 0.786 nW, with input current 0-50 mA from 3V single supply. From simulation testing, the conversion rate is much faster than other method.

  • PDF

Design of A High-Speed Current-Mode Analog-to-Digital Converter (고속 전류 구동 Analog-to-digital 변환기의 설계)

  • 조열호;손한웅;백준현;민병무;김수원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.42-48
    • /
    • 1994
  • In this paper, a low power and high speed flash Analog-to-Digital Converter using current-mode concept is proposed. Current-mode approach offers a number of advantages over conventional voltage-mode approach, such as lower power consumption small chip area improved accuracy etc. Rescently this concept was applied to algorithmic A/D Converter. But, its conversion speed is limited to medium speed. Consequently this converter is not applicable to the high speed signal processing system. This ADC is fabricated in 1.2um double metal CMOS standard process. This ADC's conversion time is measured to be 7MHz, and power consumption is 2.0mW, and differential nonlinearity is less than 1.14LSB and total harmonic distortion is -50dB. The active area of analog chip is about 350 x 550u$m^2$. The proposed ADC seems suitable for a single chip design of digital signal processing system required high conversion speed, high resolution small chip area and low power consumption.

  • PDF