• Title/Summary/Keyword: algebraic topological structure

Search Result 9, Processing Time 0.022 seconds

CO-CLUSTER HOMOTOPY QUEUING MODEL IN NONLINEAR ALGEBRAIC TOPOLOGICAL STRUCTURE FOR IMPROVING POISON DISTRIBUTION NETWORK COMMUNICATION

  • V. RAJESWARI;T. NITHIYA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.861-868
    • /
    • 2023
  • Nonlinear network creates complex homotopy structural communication in wireless network medium because of complex distribution approach. Due to this multicast topological connection structure, the queuing probability was non regular principles to create routing structures. To resolve this problem, we propose a Co-cluster homotopy queuing model (Co-CHQT) for Nonlinear Algebraic Topological Structure (NLTS-) for improving poison distribution network communication. Initially this collects the routing propagation based on Nonlinear Distance Theory (NLDT) to estimate the nearest neighbor network nodes undernon linear at x(a,b)→ax2+bx2 = c. Then Quillen Network Decomposition Theorem (QNDT) was applied to sustain the non-regular routing propagation to create cluster path. Each cluster be form with co variance structure based on Two unicast 2(n+1)-Z2(n+1)-Z network. Based on the poison distribution theory X(a,b) ≠ µ(C), at number of distribution routing strategies weights are estimated based on node response rate. Deriving shorte;'l/st path from behavioral of the node response, Hilbert -Krylov subspace clustering estimates the Cluster Head (CH) to the routing head. This solves the approximation routing strategy from the nonlinear communication depending on Max- equivalence theory (Max-T). This proposed system improves communication to construction topological cluster based on optimized level to produce better performance in distance theory, throughput latency in non-variation delay tolerant.

A NATURAL TOPOLOGICAL MANIFOLD STRUCTURE OF PHASE TROPICAL HYPERSURFACES

  • Kim, Young Rock;Nisse, Mounir
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.451-471
    • /
    • 2021
  • First, we define phase tropical hypersurfaces in terms of a degeneration data of smooth complex algebraic hypersurfaces in (ℂ∗)n. Next, we prove that complex hyperplanes are homeomorphic to their degeneration called phase tropical hyperplanes. More generally, using Mikhalkin's decomposition into pairs-of-pants of smooth algebraic hypersurfaces, we show that a phase tropical hypersurface with smooth tropicalization is naturally a topological manifold. Moreover, we prove that a phase tropical hypersurface is naturally homeomorphic to a symplectic manifold.

Algebraic Structure for the Recognition of Korean Characters (한글 문자의 인식을 위한 대수적 구조)

  • Lee, Joo-K.;Choo, Hoon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.2
    • /
    • pp.11-17
    • /
    • 1975
  • The paper examined the character structure as a basic study for the recognition of Korean characters. In view of concave structure, line structure and node relationship of character graph, the algebraic structure of the basic Korean characters is are analized. Also, the degree of complexities in their character structure is discussed and classififed. Futhermore, by describing the fact that some equivalence relations are existed between the 10 vowels of rotational transformation group by Affine transformation of one element into another, it could be pointed out that the geometrical properting in addition to the topological properties are very important for the recognition of Korean characters.

  • PDF

Meromorphic functions, divisors, and proective curves: an introductory survey

  • Yang, Ko-Choon
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.569-608
    • /
    • 1994
  • The subject matter of this survey has to do with holomorphic maps from a compact Riemann surface to projective space, which are also called algebrac curves; the theory we survey lies at the crossroads of function theory, projective geometry, and commutative algebra (although we should mention that the present survey de-emphasizes the algebraic aspect). Algebraic curves have been vigorously and continuously investigated since the time of Riemann. The reasons for the preoccupation with algebraic curves amongst mathematicians perhaps have to do with-other than the usual usual reason, namely, the herd mentality prompting us to follow the leads of a few great pioneering methematicians in the field-the fact that algebraic curves possess a certain simple unity together with a rich and complex structure. From a differential-topological standpoint algebraic curves are quite simple as they are neatly parameterized by a single discrete invariant, the genus. Even the possible complex structures of a fixed genus curve afford a fairly complete description. Yet there are a multitude of diverse perspectives (algebraic, function theoretic, and geometric) often coalescing to yield a spectacular result.

  • PDF

On the instruction of concepts of groups in elementary school (초등학교에서의 군 개념 지도에 관한 연구)

  • 김용태;신봉숙
    • Education of Primary School Mathematics
    • /
    • v.7 no.1
    • /
    • pp.43-56
    • /
    • 2003
  • In late 19C, German mathematician Felix Klein declaired "Erlangen program" to reform mathematics education in Germany. The main ideas of "Erlangen program" contain the importance of instructing the concepts of functions and groups in school mathematics. After one century from that time, the importance of concepts of groups revived by Bourbaki in the sense of the algebraic structure which is the most important structure among three structures of mathematics - algebraic structure. ordered structure and topological structure. Since then, many mathematicians and mathematics educators devoted to work with the concepts of group for school mathematics. This movement landed on Korea in 21C, and now, the concepts of groups appeared in element mathematics text as plane rigid motion. In this paper, we state the rigid motions centered the symmetry - an important notion in group theory, then summarize the results obtained from some classroom activities. After that, we discuss the responses of children to concepts of groups.of groups.

  • PDF

A New Topology of Solutions of Chemical Equations

  • Risteski, Ice B.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.176-203
    • /
    • 2013
  • In this work is induced a new topology of solutions of chemical equations by virtue of point-set topology in an abstract stoichiometrical space. Subgenerators of this topology are the coefficients of chemical reaction. Complex chemical reactions, as those of direct reduction of hematite with a carbon, often exhibit distinct properties which can be interpreted as higher level mathematical structures. Here we used a mathematical model that exploits the stoichiometric structure, which can be seen as a topology too, to derive an algebraic picture of chemical equations. This abstract expression suggests exploring the chemical meaning of topological concept. Topological models at different levels of realism can be used to generate a large number of reaction modifications, with a particular aim to determine their general properties. The more abstract the theory is, the stronger the cognitive power is.

ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS

  • FARIZ MAULANA;MUHAMMAD ZULFIKAR ADITYA;ERMA SUWASTIKA;INTAN MUCHTADI-ALAMSYAH;NUR IDAYU ALIMON;NOR HANIZA SARMIN
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.663-680
    • /
    • 2024
  • The zero divisor graph is the most basic way of representing an algebraic structure as a graph. For any commutative ring R, each element is a vertex on the zero divisor graph and two vertices are defined as adjacent if and only if the product of those vertices equals zero. In this research, we determine some topological indices such as the Wiener index, the edge-Wiener index, the hyper-Wiener index, the Harary index, the first Zagreb index, the second Zagreb index, and the Gutman index of zero divisor graph of integers modulo prime power and its direct product.

UTILITY OF DIGITAL COVERING THEORY

  • Han, Sang-Eon;Lee, Sik
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.695-706
    • /
    • 2014
  • Various properties of digital covering spaces have been substantially used in studying digital homotopic properties of digital images. In particular, these are so related to the study of a digital fundamental group, a classification of digital images, an automorphism group of a digital covering space and so forth. The goal of the present paper, as a survey article, to speak out utility of digital covering theory. Besides, the present paper recalls that the papers [1, 4, 30] took their own approaches into the study of a digital fundamental group. For instance, they consider the digital fundamental group of the special digital image (X, 4), where X := $SC^{2,8}_4$ which is a simple closed 4-curve with eight elements in $Z^2$, as a group which is isomorphic to an infinite cyclic group such as (Z, +). In spite of this approach, they could not propose any digital topological tools to get the result. Namely, the papers [4, 30] consider a simple closed 4 or 8-curve to be a kind of simple closed curve from the viewpoint of a Hausdorff topological structure, i.e. a continuous analogue induced by an algebraic topological approach. However, in digital topology we need to develop a digital topological tool to calculate a digital fundamental group of a given digital space. Finally, the paper [9] firstly developed the notion of a digital covering space and further, the advanced and simplified version was proposed in [21]. Thus the present paper refers the history and the process of calculating a digital fundamental group by using various tools and some utilities of digital covering spaces. Furthermore, we deal with some parts of the preprint [11] which were not published in a journal (see Theorems 4.3 and 4.4). Finally, the paper suggests an efficient process of the calculation of digital fundamental groups of digital images.

Motion planning with planar geometric models

  • Kim, Myung-Doo;Moon, Sang-Ryong;Lee, Kwan-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.996-1003
    • /
    • 1990
  • We present algebraic algorithms for collision-avoidance robot motion planning problems with planar geometric models. By decomposing the collision-free space into horizontal vertex visibility cells and connecting these cells into a connectivity graph, we represent the global topological structure of collision-free space. Using the C-space obstacle boundaries and this connectivity graph we generate exact (non-heuristic) compliant and gross motion paths of planar curved objects moving with a fixed orientation amidst similar obstacles. The gross motion planning algorithm is further extended (though using approximations) to the case of objects moving with both translational and rotational degrees of freedom by taking slices of the overall orientations into finite segments.

  • PDF