• Title/Summary/Keyword: algebraic function

Search Result 207, Processing Time 0.024 seconds

On Functional Equations (함수방정식의 유래)

  • Ree, Sangwook;Koh, Youngmee
    • Journal for History of Mathematics
    • /
    • v.34 no.5
    • /
    • pp.153-164
    • /
    • 2021
  • A functional equation is an equation which is satisfied by a function. Some elementary functional equations can be manipulated with elementary algebraic operations and functional composition only. However to solve such functional equations, somewhat critical and creative thinking ability is required, so that it is educationally worth while teaching functional equations. In this paper, we look at the origin of functional equations, and their characteristics and educational meaning and effects. We carefully suggest the use of the functional equations as a material for school mathematics education.

Accurate buckling analysis of rectangular thin plates by double finite sine integral transform method

  • Ullah, Salamat;Zhang, Jinghui;Zhong, Yang
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.491-502
    • /
    • 2019
  • This paper explores the analytical buckling solution of rectangular thin plates by the finite integral transform method. Although several analytical and numerical developments have been made, a benchmark analytical solution is still very few due to the mathematical complexity of solving high order partial differential equations. In solution procedure, the governing high order partial differential equation with specified boundary conditions is converted into a system of linear algebraic equations and the analytical solution is obtained classically. The primary advantage of the present method is its simplicity and generality and does not need to pre-determine the deflection function which makes the solving procedure much reasonable. Another advantage of the method is that the analytical solutions obtained converge rapidly due to utilization of the sum functions. The application of the method is extensive and can also handle moderately thick and thick elastic plates as well as bending and vibration problems. The present results are validated by extensive numerical comparison with the FEA using (ABAQUS) software and the existing analytical solutions which show satisfactory agreement.

A thermal microwave emission model for row-structured vegetation (이방성 물질의 마이크로파대역 열 발산 모델)

  • Eom, Hyo J.
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.40-45
    • /
    • 1992
  • A simple emission model applicable for low scattering (scattering << absorption) anisotropic layer is developed and applied to the interpretation of measurements of microwave emission from row crops. The vegetation layer of row crops is modeled as a random slab embedded with small spheroid with major axis aligend paralel to the crop-row direction. The total emission is given in a simple algebraic form based on the zero-order radiative transfer theory. The single scattering albedo for spheroid and its polarimetric phase function are presented. The effects of layer azimuthal dependence on emission are accounted for by using an anisotropic albedo in the zero-order transfer theory. The developed emission theory favorably compares with the brightness temperature measured over soybeans canopy.

  • PDF

A Study on the Linear Function using Graphing Calculator and CBL - A Case Study Focused on Mathematics Education for the Gifted - (그래핑 계산기와 CBL을 활용한 1차 함수 탐구 - 초등 영재아를 중심으로 한 사례연구 -)

  • Lee, Heon-Soo;Park, Jong-Youll;Lee, Kwang-Ho
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.3
    • /
    • pp.347-364
    • /
    • 2009
  • In this paper, the researchers investigated the influence of graphing calculator in learning the concept of linear function for the gifted students. Elementary students who were taking a course in enrichment mathematics at Science Education Institute for the Gifted in Mokpo National University were selected for this study. The researchers analyzed students' processes of mathematical inference and conjecture, and students' algebraic description. We found the facts that the visualization using a graphing calculator and CBL is helpful to the gifted students in understanding concepts of liner function, finding the relationship between variables, analyzing and presupposing of graph. But, using graphing calculator can be a factor that disturbs learning of students who have too much of curiosity on graphing calculator.

  • PDF

Cancellation of Motion Artifact in MRI (MRI에 있어서 체동 아티팩트의 제거)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.70-78
    • /
    • 2000
  • In this study, a new method for canceling MRI artifacts through the motion translation of image plane is presented Breathing often makes problems in a clinical diagnosis. Assuming that the head moves up and down due to breathing, rigid translational motions in only y(phase encoding axis) direction are treated Unlike the conventional Iterative phase retrieval algorithm, this method is based on the MRI imaging process and analyzing of Image property A new constraint condition with which the motion component and the true image component in the MRI signal can be separated by a simple algebraic operation is extracted After the x(read out) directional Fourier transformation of MRI signal is done, the y(phase encoding) directional spectrum phasing value is Just an algebraic sum of the Image component and the motion component Meanwhile, as It is known that the density of subcutaneous fat area is almost uniform in the head tomographs, the density distribution along a y directional line on this fat area is regarded as symmetric shape If the density function is symmetric, then the phase of spectrum changes linearly with the position Hence, the departure component from the linear function can be separated as the motion component Based on this constrant condition, the new method of artifact cancellation is presented Finally, the effectiveness of this algorithm IS shown by using a phantom with simulated motions.

  • PDF

The Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Yang, Jae-Guen;Joo, Jung-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate, hollow cylinder and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

Study of the Robustness Bounds with Lyapunoved-Based Stability Concept

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.700-705
    • /
    • 2005
  • The purpose of this project is the derivation and development of techniques for the new estimation of robustness for the systems having uncertainties. The basic ideas to analyze the system which is the originally nonlinear is Lyapunov direct theorems. The nonlinear systems have various forms of terms inside the system equations and this investigation is confined in the form of bounded uncertainties. Bounded means the uncertainties are with same positive/negative range. The number of uncertainties will be the degree of freedoms in the calculation of the stability region. This is so called the robustness bounds. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. Using this relaxing stability conditions, the selection of Lyapunov candidate function is of various forms. In this paper, the quadratic form is selected. this generated techniques has been demonstrated by recent research interest in the area of robust control design and confirms that estimation of robustness bounds will be improved upon those obtained by results of the original Lyapunov method. In this paper, the symbolic algebraic procedures are utilized and the calculating errors are reduced in the numerical procedures. The application of numerical procedures can prove the improvements in estimations of robustness for one-and more structured perturbations. The applicable systems is assumed to be linear with time-varying with nonlinear bounded perturbations. This new techniques will be extended to other nonlinear systems with various forms of uncertainties, especially in the nonlinear case of the unstructured perturbations and also with various control method.

  • PDF

The Role of Spreadsheet in Teaching Function and Modeling Activity (함수 지도와 수학적 모델링 활동에서 스프레드시트의 활용)

  • Son, Hong-Chan;Lew, Hee-Chan
    • Journal of Educational Research in Mathematics
    • /
    • v.15 no.4
    • /
    • pp.505-522
    • /
    • 2005
  • In this article we studied the role of spreadsheet in teaching function and modeling activity by some examples and students' activity performed by the six 10th graders. We especially focused the role of spreadsheet in understanding of various kinds of functions and the families of functions, and in the explanation of the given modeling problem situations. The functions of automatic copy, graphic and the cell reference of spreadsheet can be used to make students observe the causes and effects of changes of the various kind of mathematical representations of functions such as algebraic formulas, tables and graphs. Especially those functions give students a chance to identify family of functions by changing the parameters and this may lead them to the discovery of mathematical facts. In modeling activities they play a key role in the stages of the analysis of the model, explanation of the results of model and conjecture of the real world situations. As well as they make students find the rules underlying in the real world by making spreadsheet as simulation environments, which are almost impossible to make in paper and pencil environments, and give them a chance to justify their findings using mathematics.

  • PDF

An Analysis of Understanding Level of High School Students Shown in Trigonometric Functions (삼각함수에 대한 고등학생들의 이해 층위 분석)

  • Lee, Yu Bin;Cho, Cheong Soo
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.319-334
    • /
    • 2019
  • In this study, using the tasks related trigonometric functions, the degree of high school students' understanding of the function concept was examined through the level of Hitt(1998). First, the degree of the students' understanding was classified by level, then the concept understanding was reclassified by the process or the object. As a result, high school students' concept understanding showed incompleteness in three stages. It was possible to know that the process in the interpretation of the graph is the main perspective, and the operation of algebraic representation is regarded as important. Based on these results, it seems necessary to study the teaching-learning method which can understand trigonometric functions from various perspectives. It seems necessary to study a lesson model that can reach function concept's understanding level 5 that maintains consistency between problem solving and representation system.

Convergence of Nonlocal Integral Operator in Peridynamics (비국부 적분 연산기로 표현되는 페리다이나믹 방정식의 수렴성)

  • Jo, Gwanghyun;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.151-157
    • /
    • 2021
  • This paper is devoted to a convergence study of the nonlocal integral operator in peridynamics. The implicit formulation can be an efficient approach to obtain the static/quasi-static solution of crack propagation problems. Implicit methods require constly large-matrix operations. Therefore, convergence is important for improving computational efficiency. When the radial influence function is utilized in the nonlocal integral equation, the fractional Laplacian integral equation is obtained. It has been mathematically proved that the condition number of the system matrix is affected by the order of the radial influence function and nonlocal horizon size. We formulate the static crack problem with peridynamics and utilize Newton-Raphson methods with a preconditioned conjugate gradient scheme to solve this nonlinear stationary system. The convergence behavior and the computational time for solving the implicit algebraic system have been studied with respect to the order of the radial influence function and nonlocal horizon size.