• 제목/요약/키워드: aggregate and stone

검색결과 167건 처리시간 0.029초

Effect of Aging Process to Use Steel Slag for Concrete Aggregate

  • Moon, Han-Young;Yoo, Jung-Hoon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.520-525
    • /
    • 2001
  • Compared with the blast furnace slag, steel slag has the expansibility due to the reaction with water and free CaO. Therefore it is specified in Standard Specification for Concrete in Korea that steel slag aggregate must not be used in concrete. So it is unusual to use steel slag aggregate in concrete. In this study steel slag aggregate processed by several aging process was comparatively satisfied with fundamental properties as concrete aggregate, which are specific gravity, absorption, unit weight, percentage of solids and abrasion value etc. And chemical analysis is observed to understand the effect of aging process in steel slag aggregate. When the strength is measured, it is found that the concrete replacing crushed stone with steel slag aggregate had a little problem without sufficient aging process

  • PDF

건식 바텀애시 굵은골재를 사용한 경량골재 콘크리트의 공학적 특성 (Engineering Properties of Lightweight Aggregate Concrete Using Dry Bottom Ash as Coarse Aggregate)

  • 성종현;선정수;최선미;복영재;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.166-167
    • /
    • 2013
  • Bottom ash, which is discharged through a wet process in a thermal power plant, contains much unburned coal due to quenching and much salt due to seawater. However, dry bottom ash discharged through a dry process contains low unburned coal and salt, and has light -weight due to many pores. Therefore, it is expected that it can be used as lightweight aggregate. This study deals with the basic properties of concrete used dry bottom ash as coarse aggregate. As a results, the concrete having high content of dry bottom ash aggregate showed high slump by using water reducing agent and its air content was within 5±1.5% as designed value, similarly to normal weight concrete. It also showed a lower compressive strength than 100% of crushed stone.

  • PDF

석재 가공시 발생한 석분슬러지의 콘크리트 혼화재료로의 활용 (Utilization of Stone Sludge Produced by Stone Block Manufacturing Process as Concrete Admixtures)

  • 정진섭;이종천;양극영;소광호
    • 한국건축시공학회지
    • /
    • 제8권6호
    • /
    • pp.83-89
    • /
    • 2008
  • The stone sludge produced during the manufacturing process of stone blocks is considered as one of industrial waste materials. This stone sludge are managed to either burying under the ground or stacking in the yard, but this disposal process is required an extra costs. The stone sludge disposal like burying or stacking also cause environmental pollutions such as ground pollution and subterranean water pollution. Thus, this study was conducted to explore the possibility of recycling of stone dust sludge as a concrete mixing material in order to extend recycling methods and to solve the shortage of aggregate caused by recently increased demand in construction. Based on the experiment results on various ratios of cement to stone sludge content, the compressive strengths of concrete were recorded in the range of $20{\sim}30N/mm2$. The results did not show any decrease in compressive strength due to the stone dust content. It can be concluded that the stone sludge produced by stone block manufacturing can be sufficiently recycled as one of concrete mixing materials in the aspect of compressive strength.

β-NSF계와 빈졸계 계면활성제로 변성된 인조석의 물성 (A Study for the Physical Properties of Artificial Admixtured with β-NSF Base & Vinsol Base Surfactants)

  • 조헌영;박성기;서정목;김진만
    • 공업화학
    • /
    • 제10권4호
    • /
    • pp.592-598
    • /
    • 1999
  • 건축용 외장재로 사용되는 인조석은 혼합수, 시멘트, 석분, 경량골재를 사용하여 만들어지는데, 본 연구에서는 인조석의 제조단가를 낮추고 물성을 향상시키기 위하여 ${\beta}$-NSF계 계면활성제와 빈졸계 계면활성제를 사용하였다. 본 연구를 통해 ${\beta}$-NSF계와 빈졸계 계면활성제의 최적 배합비가 1.0 wt %와 0.1 wt % 됨을 도출하였고, 새로 개발된 인조석은 기존의 인조석에 비하여 물성이 약 20 wt 증가하고, 동결융해 저항성이 300% 증가하였다. 그러나, 제조가격은 기존의 제품에 비해 30% 이상 감소된다.

  • PDF

재생 폴리머 콘크리트의 물리.역학적 특성 (Physical and Mechanical Properties of Recycled Polymer Concrete)

  • 백승출;김영익;성찬용;최상릉
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.411-414
    • /
    • 2003
  • This study is performed to examine the physical and mechanical properties of recycled polymer concrete using recycled coarse aggregate and recycled fine aggregate. Tests for compressive strength, flexural strength and pulse velocity with replacement ratio of recycled coarse aggregate and recycled fine aggregate are performed. As a result, compressive strength, flexural strength and pulse velocity of polymer concrete containing recycled coarse aggregate are in the range of $826{\sim}849kgf/cm^2,\;192{\sim}200kgf/cm^2\;and\;3,932{\sim}4,000m/s$, respectively. Compressive strength, flexural strength and pulse velocity of polymer concrete containing crushed stone only are $805kgf/cm^2,\;197kgf/cm^2$ and 3,931 m/s, respectively. Accordingly, recycled aggregates is expected that can be utilizing as an aggregate of polymer concrete.

  • PDF

P형 슈미트햄머의 반발도에 미치는 골재종류의 영향 (Influence of Aggregate on the Rebound Value of P Type Schmidt Hammer)

  • 김태현;김기정;이용성;이백수;윤기원;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.239-242
    • /
    • 2002
  • This study is intended to investigate the relationship between rebound value of P type schmidt hammer and the compressive strength with various aggregates, and a series of experiments about early strength quality control by P type schmidt hammer was performed. According to the results, the compressive strength of concrete using basalt and limestone aggregate is higher by 3% and lower by 4% than that of concrete using granite aggregate respectively. Concrete using basalt and lime stone aggregate show high rebound value in vertical strike. Estimation of the compressive strength does not show differences in horizontal strike, but the compressive strength is estimated high in order of granite, basalt and limestone aggregate in vertical strike. A good correlation between the rebound value of schmidt hammer and the compressive strength is confirmed regardless of aggregate types, so it could be possible to control the quality of concrete by P type schmidt hammer test when basalt and limestone aggregates are used at the same time.

  • PDF

Effect of aggregate type on heated self-compacting concrete

  • Fathi, Hamoon;Lameie, Tina
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.33-39
    • /
    • 2017
  • In this study, two types of aggregate were used for making self-compacting concrete. Standard cubic specimens were exposed to different temperatures. Seventy-two standard cylindrical specimens ($150{\times}300mm$) and Seventy-two cubic specimens (150 mm) were tested. Compressive strengths of the manufactured specimens at $23^{\circ}C$ were about 33 MPa to 40 MPa. The variable parameters among the self-compacting concrete specimens were of sand stone type. The specimens were exposed to 23, 100, 200, 400, 600, and $800^{\circ}C$ and their mechanical specifications were controlled. The heated specimens were subjected to the unconfined compression test with a quasi-static loading rate. The corresponding stress-strain curves and modulus of elasticity were compared. The results showed that, at higher temperatures, Scoria aggregate showed less sensitivity than ordinary aggregate. The concrete made with Scoria aggregate exhibited less strain. The heated self-compacting concrete had similar slopes before and after the peak. In fact, increasing heat produced gradual symmetrical stress-strain diagram span.

재생골재를 활용한 폴리머 투수콘크리트의 특성 (Properties of Polymer Permeability Concrete Using Recycled Aggregate)

  • 김영익;성찬용;최상릉;정덕현
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.415-418
    • /
    • 2003
  • This study is performed to examine properties of polymer permeability concrete using recycled coarse aggregate and blast furnace slag for application of structures needed permeability. Tests for compressive strength, flexural strength and pulse velocity with replacement ratio of recycled coarse aggregate are performed. As a result, compressive strength, flexural strength and coefficient of permeability of polymer permeability concrete containing recycled coarse aggregate are in the range of $180{\sim}200kgf/cm^2,\;58{\sim}64kgf/cm^2\;and\;4.6{\times}10^{-2}{\sim}6.9{\times}10^{-2}cm/s$, respectively. Compressive strength, flexural strength and pulse velocity of polymer concrete containing crushed stone only are $192kgf/cm^2,\;65kgf/cm^2\;and\;6.1{\times}10^{-2}cm/s$, respectively. Accordingly, recycled coarse aggregate is expected that can be utilizing as an aggregate of polymer permeability concrete.

  • PDF

석재가공시 발생하는 소음의 특성에 관한 연구 (A Study on the Characteristics of Noise occurred when processing Stone Material)

  • 주덕훈;국정훈;김재수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.231-235
    • /
    • 2007
  • Stone Industry in our country is classified mainly in view of supply of raw materials ingredients, as follows: Stone-Quarrying Industry who develops the natural resources, Stone Processing Industry who processes the quarried raw ore into construction materials and stone-products, Stony Mountain-Aggregate Industry who supplies the elementary raw materials ingredients to construction section, respectively. Among them, while Stone Processing Industry sells its turnover around billion-Won level per annum per a company, most of other job sites are paltry, adopting less than 10 employees, and it is real state that their working environments are also very coarse. The Noise originated from processing-instrument which generates at such Stone Processing Industry is as so repeatedly reiterating Loud Noise that most of the spot workers are forcedly imposing such dangers as the severe unpleasant feeling and hearing impairments. On this viewpoint, this Research is now analyzing on the frequency characteristics with regard to the Noise that generated from various processing-instruments, and then based on this, in order to grasp the influence of the Loud Noise generating when process the stone materials, this study has ever evaluated it with PSIL and NR. It is considered that such data could be used as the valuable material for establishment of a comfortable working environment hereafter.

  • PDF

석분토와 바텀애쉬를 이용한 인공경량골재 제조 (Manufacturing of Artificial Lightweight Aggregate using Stone-Dust and Bottom Ash)

  • 윤섭;김정빈;정용;김양배
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.381-384
    • /
    • 2008
  • 부순골재 생산과정에서 발생하는 석분토와 화력발전소에서 발생하는 Bottom ash를 이용한 인공경량골재의 물리 화학적 특성을 분석하여 콘크리트용 인공경량골재의 사용여부를 검토하였는데, 그 결과는 다음과 같다. 석분토(이하 SD)와 Bottom ash(이하 BA)의 혼입비율에 따른 인공경량골재의 특성으로는 BA의 혼입비율이 커질수록 미연탄소와 $Fe_2O_3$의 함량 증가로 인해 소성 시 가스 발생량이 증가하여 밀도는 낮아지고 흡수율은 증가하는 것으로 나타났는데, 화학조성상 적절한 혼합비율은 SD : BA = 5:5 내외일 것으로 판단된다. Flux제 첨가에 따른 인공경량골재의 특성으로는 $Na_2SO_4$ 첨가율이 증가할수록 밀도는 낮아졌다. 이에 본 연구범위내에서는 SD: BA = 5:5, $Na_2SO_4$ 2%, $Fe_2O_3$ 1%, 소성 온도 $1,150^{\circ}C$, 소성시간 15분에서 밀도 $1.52g/cm^3$, 흡수율 7.3%의 인공경량골재를 개발할 수 있었다.

  • PDF