• Title/Summary/Keyword: aeroengine

Search Result 12, Processing Time 0.026 seconds

EFFECTS OF PROCESS PARAMETERS ON GRAIN SIZE DURING ISOTHERMAL FORGING OF A TC6 ALLOY

  • Miaoquan LI;Aiming XIONG;Shankun XUE;Yuanchun LI;Hai LIN;Hairong WANG;Shaobo SU;Lichuang SHEN
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.47-50
    • /
    • 2003
  • Grain size of the $\alpha$ phase is computed during isothermal forging of the TC6 aerofoil blade, by combining FE with the Yada's model of grain size. The present results illustrate the grain size and distribution of the $\alpha$ phase during isothermal forging of the TC6 aerofoil blade' in detail. The computed results show that height reduction, deformation temperature, hammer velocity and friction have significant effect on distribution of the equivalent strain, and that height reduction, deformation temperature and hammer velocity have more significant effect on grain size of the $\alpha$ phase than friction between billet and die.

  • PDF

Aeroengine performance degradation prediction method considering operating conditions

  • Bangcheng Zhang;Shuo Gao;Zhong Zheng;Guanyu Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2314-2333
    • /
    • 2023
  • It is significant to predict the performance degradation of complex electromechanical systems. Among the existing performance degradation prediction models, belief rule base (BRB) is a model that deal with quantitative data and qualitative information with uncertainty. However, when analyzing dynamic systems where observable indicators change frequently over time and working conditions, the traditional belief rule base (BRB) can not adapt to frequent changes in working conditions, such as the prediction of aeroengine performance degradation considering working condition. For the sake of settling this problem, this paper puts forward a new hidden belief rule base (HBRB) prediction method, in which the performance of aeroengines is regarded as hidden behavior, and operating conditions are used as observable indicators of the HBRB model to describe the hidden behavior to solve the problem of performance degradation prediction under different times and operating conditions. The performance degradation prediction case study of turbofan aeroengine simulation experiments proves the advantages of HBRB model, and the results testify the effectiveness and practicability of this method. Furthermore, it is compared with other advanced forecasting methods. The results testify this model can generate better predictions in aspects of accuracy and interpretability.

Study on Mathematical Modeling and Response Characteristics of High-speed Solenoid Valve for Aero-engine

  • Zhang, Xiaodong;Yang, Yutao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.80-83
    • /
    • 2008
  • Because of its advantages of simple structure, fast response speed, strong anti-pollution ability and good stability, high-speed solenoid valve has been widely used in aeroengine control systems, and some performances of the aeroengine control systems were affected directly by the response speed of high-speed solenoid valve. For some two-position two-way highspeed solenoid cone-valve, the paper discusses the establishment of its mathematical model and analyses its response characteristics by simulation model which is run in simulink of Matlab. Further more, a backstepping and segmentation method is used in the research of response characteristics, and the method is proved to be an accurate, fast and new method to get the influences of parameters on the valve s response characteristics.

  • PDF

Probabilistic vibration and lifetime analysis of regenerated turbomachinery blades

  • Berger, Ricarda;Rogge, Timo;Jansen, Eelco;Rolfes, Raimund
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.503-521
    • /
    • 2016
  • Variances in turbomachinery blades caused by manufacturing, operation or regeneration can result in modified structural behavior. In this work, the scatter of geometrical and material properties of a turbine blade and its influence on structure performance is discussed. In particular, the vibration characteristics and the lifetime of a turbine blade are evaluated. Geometrical variances of the surface of the blades are described using the principal component analysis. The scatter in material properties is considered by 16 varying material parameters. Maximum vibration amplitudes and the number of load cycles the turbine blade can withstand are analyzed by finite element simulations incorporating probabilistic principles. The probabilistic simulations demonstrate that both geometrical and material variances have a significant influence on the scatter of vibration amplitude and lifetime. Dependencies are quantified and correlations between varied input parameters and the structural performance of the blade are detected.

Review of Stall Inception in Turbocompressors (터보압축기의 스톨 발단에 관한 연구 리뷰)

  • Kang, Jeong-Seek;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.58-65
    • /
    • 2003
  • Stall inception means the phenomena of rotating stall initiation. The initiation mechanism of rotating stall, the existence of stall precursor, the behavior of stall precursor, stall warning scheme and control scheme are the main interests in stall inception research. Compared to the studies on rotating stall which has long history, the stall inception has been studied for about recent 20 years. After the first discovery of stall precursor in about 20 years ago, many studies were reported on stall inception phenomena. The inception pattern of 'mode' and 'spike' were found, and some of its characteristics are known. And now the stall inception has become one of the fascinating fields in turbomachinery. The development stall control scheme which apply the reliable stall warning scheme will play a great role in future compressor and aeroengine. This paper reviews the results and analysis methods on stall inception studies.

CARS thermometry in flame zone of turbine combustor sector rigs. (CARS 장치를 이용한 터빈 연소 시험기의 화염 온도 측정)

  • Park, C.W.;Lee, J.H.;Hahn, Y.M.;Ko, Y.S.;Lee, K.Y.;Kim, H.M.;Lee, S.Y.;Yang, S.S.;Lee, D.S.;Chang, Y.J.;Shin, H.D.;Hahn, J.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.180-186
    • /
    • 2001
  • Spatially and temporally resolved gas temperature measurements have been made in aeroengine combustor sector rig burning standard kerosene fuel. Temperature PDFs have been obtained from a triple-sector double annular combustor rig running at simulated ground idle conditions, showing features of flow mixing within the burning rig. Mean temperature and temperature PDFs were measured by CARS to investigate flow characteristics of the recirculation zones.

  • PDF

Phenomenon Examination on High Vibration of NG Boiler in 320MW Thermal Power Plant (320MW 화력발전소 가스 보일러 고 진동 현상 규명)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Hyun;Kim, Hee-Soo;Lee, Doo-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1034-1039
    • /
    • 2006
  • Large-amplitude, combustion-induced oscillations are observed in most systems involving continuous flow, such as aeroengine afterburners, gas boilers and rocket motors. Strong furnace vibration is typically characterized by the presence of well developed standing waves in the furnace, generating high pressure pulsation and causing structural vibration of the furnace walls. 320MW NG boilers have been experienced high vibration frequently since reconstruction works. Excessive furnace vibration was encountered when a burner air rate is suddenly reduced during load zone changed from 270MW to 300MW. An investigation showed that the primary cause of the vibration was induced by combustion low air flow rate. This paper describes phenomenon examination on strong furnace vibration due to the change of boiler operating conditions.

  • PDF

Rapid Prototyping of Aero-engine Complex Control Method

  • Lu, Jun;Guo, Ying-Ging;Wang, Bin-Zheng
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.59-62
    • /
    • 2008
  • This paper presents an approach of complex control method(CCM) real-time simulation and rapid prototyping for aero-engine control system and describes its principle and realization in detail. This approach is mainly based on MATLAB/RTW for rapid prototyping from system modeling to embedded implementation. According to the simulation results between automatic code and manual code for an aeroengine multi-variable control method, it shows that this approach is feasible and effective, and not only decreases development cycle but also improves the reliability and universality. So a series of problems can be resolved during the simulation stage and rapid application to prototype testing.

  • PDF

The nonlinear fuzzy intelligent theory for high-bypass-ratio two-spool unmixed-flow jet engines

  • C.C. Hung;T. Nguyen
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.369-391
    • /
    • 2023
  • In our research we have offered a solid solution for aeronautical analysis. which can guarantee the asymptotic stability of coupled nonlinear facilities. According to the theoretical solutions and methods presented, the engine of this aircraft is a small high-bypass turbofan engine. using the non-linear aero-motor control approach and this paper focuses on the power management function of the aero-motor control system. These include static controls and transient controls. A mathematical model of the high-bypass-ratio two-spool unmixed-flow aeroengine was developed through a set of nonlinear dynamic equations verified by experimental data. A single actuator using the displacement method is designed to maintain a certain level of thrust under steady-state conditions. and maintains repeatable performance during transient operation from the requested thrust phase to the next. A single controller can compensate for the effects of noise and harmonic noise at many performance points. And the dynamic performance of a single controller is satisfactory during the transient. for fairness Numerical and computer experiments are described in the perfection of the methods we offer in research.