• Title/Summary/Keyword: aerodynamic properties

Search Result 129, Processing Time 0.027 seconds

An Experimental Study on 3-Dimension Aerodynamic Properties of Composite Cable Stayed Bridge (합성형 사장교의 3차원 공기역학적 특성에 대한 실험적 연구)

  • Min, In Ki;Chae, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.741-750
    • /
    • 2008
  • The aim of this study was to analyze the aerodynamic properties of the composite cable-stayed bridge by conducting three-dimensional wind tunnel tests. Focusing on the improved section of the bridge in the two-dimensional wind tunnel tests, the bridge's aerodynamic stability was estimated based on the angles of attack and the wind angles. The aerodynamic properties of vertical galloping, torsion galloping,and torsion flutter were also estimated based on the design wind velocity, and because much of the cable-stayed bridge was constructed using FCM, it was not sufficiently stiff during the bridge's construction. Therefore,the experience progressed by stages: from the full stage to the tow stage, and until the bridge became a single tower. Since the original plane was designed to be a steel box girder, the aerodynamic properties of the steel-box-type and composite-type girder could be compared. The results of this study can be utilized as basic data regarding the aerodynamic properties of medium-length and short composite cable-stayed bridges.

Aerodynamic Properties of Granular Agrichemicals (입제 비료 및 농약의 공기역학적 성질)

  • 이성호;이중용;정창주;이채식
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.105-114
    • /
    • 1998
  • Granule application with a boom has merits of accurate application and high field efficiency. In order to develop a boom granule applicator, aerodynamic properties of agrichemicals should be investigated. This study was accomplished to investigate aerodynamic properties of granules and factors affecting on them. The tested agrichemicals were urea, compound fertilizer (17-21-17), sand and zeolite. Basic physical properties of granules such as true density, sphericity, and arithmetic mean diameter for those materials were analyzed. Regression equations for pickup velocity (v$_{p}$) and saltation velocity (v$_{s}$) were proposed by the data transformation and the multi-regression analysis as follows : (equation omitted) where, 0< s < 1, 0< λ$_{i}$< 3, 35 < D/d$_{p}$ < 350, 1000 $_{p}$/p$_{a}$ < 2500 The range of pickup velocity of fertilizers and other agrichemicals were shown to be 10-16m/s and 9-13m/s, respectively. The saltation velocity of fertilizer and other agrichemicals were 3 m/s and 4 m/s, respectively.y.ively.y.y.

  • PDF

A Study on Properties of Torque Control for Wind Turbine (풍력터빈 토크제어의 특성 고찰)

  • Lim, Chae-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1157-1162
    • /
    • 2009
  • The aerodynamic torque and power caused by the interaction between the wind and blade of wind turbine are highly nonlinear. For this reason, the overall dynamic behaviors of wind turbine have nonlinear characteristics. The aerodynamic nonlinearity also affects properties of torque control for wind turbine. In this paper, the nonlinear aerodynamic property according to the wind speed below rated power and its effects on the torque control system are investigated. Nonlinear parameter representing change of aerodynamic torque with respect to rotor speed is obtained by linearization technique. Effects of this aerodynamic nonlinear parameter on the closed-loop torque system with PI controller for an 1.5 MW wind turbine are presented.

Estimation of Hemispherical Aerodynamic Bearing using Experimental Method (반구형 공기동압 베어링의 실험적 평가)

  • 김영일
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.239-244
    • /
    • 1997
  • Recently, the high speed rotation and accuracy is needed in the field of electro-optic devices. But it is difficult for ball bearing to satisfy such conditions. So, we have developed the hemispherical type aerodynamic bearing for LSU(Laser Scanning Unit) motor. The hemispherical type aerodynamic bearing is able to support radial and axial load simultaneously. In this research, We have developed mass production method and tested the perromance of aerodynamic bearing in comparision with ball bearing at the speed of 23,000rpm. In the result, we proved that the properties of aerodynamic bearing is better than ball bearing's.

  • PDF

An Experimental Study on the Aerodynamic Effects Generated by a Train Passing near by Platform - Conventional Railway Station Field Test (철도차량의 승강장 통과 시 발생하는 공기역학적 영향에 대한 실험적 연구-기존철도역 현장시험)

  • Kim Dong-Hyeon;Kwon Hyeok-Bin;Song Moon-Shuk;Kim Do-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.889-896
    • /
    • 2004
  • A series of filed tests have been performed to investigate the aerodynamic effects on platform of the railway station during the passage of train that can be unpleasant and even dangerous to the pedestrians. To assess the aerodynamic effects on the platform, two aerodynamic properties has been measured; one is the wind gust induced by the train and the other is the pressure pulses generated when the nose and the tail of train passes. To measure these aerodynamic properties during the train passage, an array of hot-wire type anemometers and several sets of pressure transducers have been used, respectively. This paper deals with the filed test on conventional railway at about l00km/h operational speed, in which total 34 measurements has been made at the Bugok station in Seoul-Busan line for Saemaul and Mugungwha train. The results showed dramatic differences in the aerodynamic features between the two trains that are supposed to originate from the contrasting nose shapes of the trains.

  • PDF

An Experimental Study on the Aerodynamic Effects Generated by a Train Passing near by Platform(Conventional Railway Station Field Test) (철도차량의 승강장 통과 시 발생하는 공기역학적 영향에 대한 실험적 연구(기존철도역 현장 시험))

  • 김동현;권혁빈;김문헌;송문석;김도훈
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.137-141
    • /
    • 2004
  • A series of filed tests have been performed to investigate the aerodynamic effects on platform of the railway station during the passage of train that can be unpleasant and even dangerous to the pedestrians. To assess the aerodynamic effects on the platform, two aerodynamic properties has been measured; one is the wind gust induced by the train and the other is the pressure pulses generated when the nose and the tail of train passes. To measure these aerodynamic properties during the train passage, an array of hot-wire type anemometers and several sets of pressure transducers have been used, respectively. This paper deals with the filed test on conventional railway at about 100km/h operational speed, in which total 34 measurements has been made at the Bugok station in Seoul-Busan line for Saemaul-ho and Mugungwha-ho train. The results showed dramatic differences in the aerodynamic features between the two trains that are supposed to originate from the contrasting nose shapes of the trains.

Torque Control of Wind Turbine Using Nonlinear Parameter of Rotor Speed in the Region of Optimal Tip Speed Ratio (최적 주속비 구간에서 로터속도 비선형 파라미터를 이용한 풍력터빈의 토크제어)

  • Lim, Chae-Wook;Kim, Sang-Gyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.30-35
    • /
    • 2012
  • Aerodynamic torque of wind turbine has nonlinear properties. Nonlinearity of aerodynamic torque is very important in wind turbine in the aspect of control. The traditional torque control method using optimal mode gain has been applied in many wind turbines but its response is slower as wind turbine size is larger. In this paper, a torque control method using a nonlinear parameter of rotor speed among nonlinear properties of aerodynamic torque. Simulink model is implemented to obtain the nonlinear parameter of rotor speed and numerical simulations for a 2MW wind turbine are carried out and simulation results for the traditional and proposed torque control methods are compared.

LSTM-based aerodynamic force modeling for unsteady flows around structures

  • Shijie Liu;Zhen Zhang;Xue Zhou;Qingkuan Liu
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.147-160
    • /
    • 2024
  • The aerodynamic force is a significant component that influences the stability and safety of structures. It has unstable properties and depends on computer precision, making its long-term prediction challenging. Accurately estimating the aerodynamic traits of structures is critical for structural design and vibration control. This paper establishes an unsteady aerodynamic time series prediction model using Long Short-Term Memory (LSTM) network. The unsteady aerodynamic force under varied Reynolds number and angles of attack is predicted by the LSTM model. The input of the model is the aerodynamic coefficients of the 1 to n sample points and output is the aerodynamic coefficients of the n+1 sample point. The model is predicted by interpolation and extrapolation utilizing Unsteady Reynolds-average Navier-Stokes (URANS) simulation data of flow around a circular cylinder, square cylinder and airfoil. The results illustrate that the trajectories of the LSTM prediction results and URANS outcomes are largely consistent with time. The mean relative error between the forecast results and the original results is less than 6%. Therefore, our technique has a prospective application in unsteady aerodynamic force prediction of structures and can give technical assistance for engineering applications.

Aerodynamic force characteristics and galloping analysis of iced bundled conductors

  • Lou, Wenjuan;Lv, Jiang;Huang, M.F.;Yang, Lun;Yan, Dong
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.135-154
    • /
    • 2014
  • Aerodynamic characteristics of crescent and D-shape bundled conductors were measured by high frequency force balance technique in the wind tunnel. The drag and lift coefficients of each sub-conductor and the whole bundled conductors were presented under various attack angles of wind. The galloping possibility of bundled conductors is discussed based on the Den Hartog criterion. The influence of icing thickness, initial ice accretion angle and sub-conductor on the aerodynamic properties were investigated. Based on the measured aerodynamic force coefficients, a computationally efficient finite element method is also implemented to analyze galloping of iced bundled conductors. The analysis results show that each sub-conductor of the bundled conductor has its own galloping feature due to the use of aerodynamic forces measured separately for every single sub-conductors.

An Experimental Study on Wind Aerodynamic Improvement of Steel Composite Cable Stayed Bridge having π-shaped Girder (π형 주형을 가진 강합성 사장교의 공기역학적 제진방법에 대한 실험적 연구)

  • Chang, Dong Il;Min, In Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.801-811
    • /
    • 1998
  • In this paper, aerodynamic properties and improvements of the ${\pi}-shaped$ stiffening girder is studied by wind tunnel tests in steel composite cable stayed bridge. As an improvement device, fairing, extension, post and flap is tested. and the best improved section is selected and estimated on angles of attack, damping ratios and turbulent flows. It is shown that the selected fairing is effective to improve the aerodynamic stability. And this study can be utilized as a database of wind-resistant methodology of steel composite cable stayed bridge.

  • PDF