• Title/Summary/Keyword: advanced composite laminate plate

Search Result 15, Processing Time 0.021 seconds

A Study on the Stiffnesses of the Advanced Composite Laminated Plates (복합신소재 적층판의 강성에 대한 연구)

  • Han, Bong Koo;Kim, Yun Young
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • Compared with conventional construction materials such as steel and concrete, the advanced composite materials are corrosion-free, light-weight, and when used as construction materials, the construction period can be made less than one-tenth needed for conventional materials. However, because of the difficult theories and formulas, the ordinary construction engineers have difficulties in understanding and calculating formulas needed in construction. In this paper, calculation of the stiffnesses of the advanced composite laminated plates and compared with the result of stiffnesses.

The Effect of the Aspect Ratio on the Natural Frequency of the Advanced Composite Structures (복합신소재 구조물의 형상비에 따른 고유진동수의 영향)

  • Kim, Yun Young;Han, Bong Koo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.18-23
    • /
    • 2014
  • In this paper. the effects of the aspect ratio on the natural frequency of the advanced composite road structures is studied. The advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. Some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. The plate aspect ratio considered is from 1 to 5. Most of the road structures have large aspect ratios, for such cases further simplification is possible by neglecting the effect of the longitudinal moment terms.

Geometrical nonlinear dynamic analysis of laminated skew plates made of advanced composite materials (적층된 ACM 경사판의 기하학적 비선형 동적 해석)

  • Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.28-34
    • /
    • 2010
  • W e performed a geometrical nonlinear dynamic analysis of laminated skew plates made of advanced composite materials (ACM ) based on the first-order shear deformation plate theory (FSDT). The Newmark method and Newton-Raphson iteration are used for the nonlinear dynamic solution. The effects of skew angles and layup sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite and skew plates, and the new results reported in this paper show the significant interactions between the skew angle and layup sequence in the skew laminate. Key observation points are discussed and a brief design guideline is given.

  • PDF

The effects of stacking sequence on the penetration-resistant behaviors of T800 carbon fiber composite plates under low-velocity impact loading

  • Ahmad, Furqan;Hong, Jung-Wuk;Choi, Heung Soap;Park, Soo-Jin;Park, Myung Kyun
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • Impact damages induced by a low-velocity impact load on carbon fiber reinforced polymer (CFRP) composite plates fabricated with various stacking sequences were studied experimentally. The impact responses of the CFRP composite plates were significantly affected by the laminate stacking sequences. Three types of specimens, specifically quasi-isotropic, unidirectional, and cross-ply, were tested by a constant impact carrying the same impact energy level. An impact load of 3.44 kg, corresponding to 23.62 J, was applied to the center of each plate supported at the boundaries. The unidirectional composite plate showed the worst impact resistance and broke completely into two parts; this was followed by the quasi-isotropic lay-up plate that was perforated by the impact. The cross-ply composite plate exhibited the best resistance to the low-velocity impact load; in this case, the impactor bounced back. Impact parameters such as the peak impact force and absorbed energy were evaluated and compared for the impact resistant characterization of the composites made by different stacking sequences.

The Effects of the Aspect Ratio on Natural Frequency of the Advanced Composite Materials Road Structures (복합신소재 도로구조물의 형상비가 고유진동수에 미치는 영향)

  • Han, Bong Koo
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.17-22
    • /
    • 2013
  • PURPOSES: Current theories for composite structures are too difficult for design engineers for construction. The purpose of this paper is to demonstrate to the practicing engineers, how to apply the advanced composite materials theory to the road structures. METHODS: Some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. The plate aspect ratio considered is from 1 to 5. In order to study the effect of $M_x$ on the equilibrium equations, two cases are considered. $M_x$ term is considered or neglected. RESULTS: Most of the road structures have high aspect ratios, for such cases further simplification is possible by neglecting the effect of the longitudinal moment terms. CONCLUSIONS: Most of the road structures have plate aspect ratios higher than 2. It is concluded that, for all boundary conditions, neglecting the longitudinal moment($M_x$) terms is acceptable if the aspect ratio (a/b) is equal to or higher than 2. This conclusion gives good guide line for design of the road structures.

The Effect on Neglecting the Longitudinal Moment Terms in a Composite Liminate Plate with Stacking Sequence and Fiber Orientation (적층형태 및 보강방향에 따른 복합적층판의 종방향 모멘트 무시효과)

  • Lee, Bong-hak;Lee, Jung-ho;Hong, Chang-Woo;Kim, Kyung-Jin
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.97-105
    • /
    • 1998
  • The most of the design engineers for construction has academic background of bachelors degree. Theories for advanced composite structures are too difficult for such engineers and some simple but accurate enough methods are necessary. The senior author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. Such plates behave as special orthotropic plates and simple formulas developed by the author can be used. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms($M_x$) on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.

  • PDF

Buckling Characteristic of Non-Circular Closed Composite Shells (비원형 폐합쉘의 좌굴특성)

  • Park, Won-Tae;Chun, Kyoung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.36-43
    • /
    • 2010
  • In this study, the buckling loads and mode shapes characteristic of circular and non-circular(elliptical) closed composite shells were analyzed. To analyses the buckling behaviors, we develop and report an improved generalized shell element called 4EAS-FS through a combination of enhanced assumed strain and the substitute shear strain fields. A flat shell element has been developed by combining membrane element with drilling degree-of-freedom and a plate bending element. The combined influences of length, thicknesses, cross-sectional parameters, and fiber-angle on the critical buckling loads and mode shapes of circular and non-circular(elliptical) closed shells are examined.

  • PDF

Analysis of Time-Dependent Deformation of CFRP Considering the Anisotropy of Moisture Diffusion

  • Arao, Yoshihiko;Koyanagi, Jun;Hatta, Hiroshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.359-372
    • /
    • 2008
  • The moisture absorption behavior of carbon fiber-reinforced plastic (CFRP) and its effect on dimensional stability were examined. Moisture diffusivity in CFRP was determined by measuring a specimen's weight during the moisture absorption test. Three types of CFRP specimens were prepared: a unidirectionally reinforced laminate, a quasi-isotropic laminate and woven fabric. Each CFRP was processed into two geometries - a thin plate for determination of diffusivity and a rod with a square cross-section for the discussion of two-dimensional diffusion behavior. By solving Fick's law expanded to 3 dimensions, the diffusivities in the three orthogonal directions were obtained and analyzed in terms of the anisotropy of CFRP moisture diffusion. Coefficients of moisture expansion (CMEs) were also obtained from specimen deformation caused by moisture absorption. During moisture absorption, the specimen surfaces showed larger deformation near the edges due to the distribution of moisture contents. This deformation was reasonably predicted by the finite element analysis using experimentally determined diffusivities and CMEs. For unidirectional CFRP, the effect of the fiber alignment on CME was analyzed by micromechanical finite element analysis (FEA) and discussed.

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.

Parametric effects on geometrical nonlinear dynamic behaviors of laminated composite skew plates (적층된 복합소재 경사판의 기하학적 비선형 동적 거동에 미치는 매개변수 영향)

  • Lee, Sang-Youl
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.217-223
    • /
    • 2012
  • This study investigates a geometrical nonlinear dynamic behaviors of laminated skew plates made of advanced composite materials (ACM). Based on the first-order shear deformation plate theory (FSDT), the Newmark method and Newton-Raphson iteration are used for the nonlinear dynamic solution. The effects of cutout sizes, skew angles and lay up sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite plates with or without central cutouts, and the new results reported in this paper show the significant interactions between the cutout, skew angles and layup sequence in the laminate. Key observation points are discussed and a brief design guideline of skew laminates is given.