• Title/Summary/Keyword: adsorption application

Search Result 455, Processing Time 0.035 seconds

Application of Photocatalytic Filter with Intensified Adsorption for Indoor Air Quality Control (실내공기정화를 위한 흡착강화 광촉매 필터의 적용)

  • 윤정호;윤우석;황철순;김동형;이태규
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.389-390
    • /
    • 2003
  • 최근에는 실내공기질에 관한 관심이 매우 높아지고, 주거 공간의 재실자들은 좋은 실내환경에서 거주하고 싶은 기대감이 증가되면서 실내환경 개선을 위한 노력과 함께 그 중요성을 새로이 인식하고 있다. 특히, 인간이 실내에서 생활하는 시간이 하루 중 90 % 이상을 차지하며, 실내공기가 오염될 경우 쉽게 정화되지 않아 Sick House 등 재실자들의 건강을 위협하기 때문에 이에 대한 대책 마련이 시급하다. 본 연구는 실내공기 중의 주요 문제로 인식되고 있는 악취성 물질의 효과적인 제어를 위하여 광화학 반응이 적용되는 필터 시스템을 개발하고자 하였다. (중략)

  • PDF

Effect of Humidity on the Electrospinning of Chitosan Solution (키토산 용액의 전기방사에 있어 습도의 영향)

  • Lee, Jin-Ah;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.273-274
    • /
    • 2003
  • Chitin and chitosan have a wide range of application on the environmental and biomedical engineering by their biocompatibility, biodegradability, non-toxicity and adsorption property, etc. The efforts of manufacturing chitosan fibers are continuously maintained until now$\^$l.2)/. Electrospinning is new method to produce the nano-sized fibers for medical uses. Recently, formation of chitosan fiber using electrospinning is studied by many textile researchers. (omitted)

  • PDF

surface acoustic wave oscillator hymidity sensor using hexafluoropropene plasma thin film (헥사플루오르프로펜 플라즈마박막을 이용한 표면탄성파발진기 습도센서)

  • 박남천;서은덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.144-146
    • /
    • 1992
  • Surface acoustic wave(SAW) oscillator offers many attractive features for application to vapor sensors. The perturbation of SAW velocity by the hexafluoropropence plasma polymer thin film has been studied for relative humidity sensing. adsorption of moisture produces rapid aid changes in the properties of the film, resulting in a change in the velocity of surface acoustic waves and, hence, in the frequency of one SAW oscillator. The device used in our experiments have 55 MHZ SAW oscillator fabricated on a LiNbO substrate.

  • PDF

Density Functional Theory Calculations on Ag Adatom in the Bi2Se3 (111) Surface

  • Sin, Eun-Ha
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.243-245
    • /
    • 2013
  • Topological insulator (TI) has non-trivial metallic surface states and has provoked many studies of property of this metarial. One of TI, $Bi_2Se_3$ is the promising metarial due to application of quantum devices. We investigate the effect of Ag adatom in the $Bi_2Se_3$ (111) surface. The silver atom prefers to locate within the vdW gap between the QLs rather than on the top surface. The effect of Ag adsorption is the rise of the Fermi level implying that the adsorbed Ag atoms behave like electron donors.

  • PDF

Removal Characteristics of Chloral Hydrate by Activated Carbons and Biofiltration (활성탄과 생물여과 공정에서의 Chloral hydrate 제거 특성)

  • Bae, Sang-Dae;Son, Hee-Jong;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.218-224
    • /
    • 2008
  • Coal-, coconut- and wood-based activated carbons and anthracite were tested to evaluate adsorption and biodegradation performances of chloral hydrate. In the early stage of the operation, the adsorption was the main mechanism for the removal of chloral hydrate, however as increasing populations of attached bacteria, the bacteria played a major role in removing chloral hydrate in the activated carbon and anthracite biofilter. It was also investigated that chloral hydrate was readily subjected to biodegrade. The coal- and coconut-based activated carbons were found to be most effective adsorbents in adsorption of chloral hydrate. Highest populations and activity of attached bacteria were shown in the coal-based activated carbon. The populations and activity of attached bacteria decreased in the order: coconut-based activated carbon > wood-based activated carbon > anthracite. The attached bacteria was inhibited in the removal of chloral hydrate at temperatures below 10$^{\circ}C$. It was more active at higher water temperatures(20$^{\circ}C$ <) but less active at lower water temperature(10$^{\circ}C$>). The removal efficiencies of chloral hydrate obtained by using four different adsorbents were directly related to the water temperatures. Water temperature was the most important factor for removal of chloral hydrate in the anthracite biofilter because the removal of chloral hydrate depended mainly on biodegradation. Therefore, the main removal mechanism of chloral hydrate by applying activated carbon was both adsorption and biodegradation by the attached bacteria. The observation suggests that the application of coalbased activated carbon to the water treatment should be the best for the removal of chloral hydrate.

Application of Adsorption Characteristic of Ferrous Iron Waste to Phosphate Removal from Municipal Wastewater (폐산화철의 흡착특성을 이용한 도시하수내 인 처리)

  • Kim, Jin-Hyung;Lim, Chae-Sung;Kim, Keum-Yong;Kim, Dae-Keun;Lee, Sang-Ill;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • This study proposed the method of phosphate recovery from municipal wastewater by using ferrous iron waste, generated from the mechanical process in the steel industry. In the analysis of XRD, ferrous iron waste was composed of $Fe_3O_4$ (magnetite), practically with $Fe^{2+}$ and $Fe^{3+}$. It had inverse spinel structure. In order to identify the adsorption characteristic of phosphate on ferrous iron waste, isotherm adsorption test was designed. Experimental results were well analyzed by Freundlich and Langmuir isotherm theories. Empirical constants of all isotherms applied increased with alkalinity in the samples, ranging from 1.2 to 235 $CaCO_3/L$. In the regeneration test, empirical constants of Langmuir isotherm, i.e., $q_{max}$ (maximum adsorption capacity) and b (energy of adsorption) decreased as the frequency of regeneration was increased. Experiment was further performed to evaluate the performance of the treatment scheme of chemical precipitation by ferrous iron waste followed by biological aerated filter (BAF). The overall removal efficiency in the system increased up to 80% and 90% for total phosphate (TP) and soluble phosphate (SP), respectively, and the corresponding effluent concentrations were detected below 2 mg/L and 1 mg/L for TP and SP, respectively. However, short-circuit problem was still unsolved operational consideration in this system. The practical concept applied in this study will give potential benefits in achieving environmentally sound wastewater treatment as well as environmentally compatible waste disposal in terms of closed substance cycle waste management.

Physical-chemical Properties and Phosphorus Adsorption Characteristics of Soils in Baicheng, China (중국 길림성 백성지역 흑개토의 이화학성 및 인산 흡착 특성)

  • Jin, Sheng-Ai;Lee, Sang-Mo;Choi, Woo-Jung;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.92-96
    • /
    • 2001
  • Soil physical-chemical properties and phosphorous adsorption characteristics were investigated to obtain the informations of the appropriate fertilization and soil management in Baicheng region, China, where agricultural circumstances at present forces to consider the use of land for crop production. Soils were collected from one uncultivated and three cultivated lands on August 1993. Soil $_PH$ was very higher in uncultivated land than in cultivated land, their values were 10.2 and 7.4, respectively. Regardless of cultivation, soil organic matter contents were below 2%, and concentrations of available soil phosphorus expressed as Bray 1 P and Olson P were less than 10 mg P $kg^{-1}$, however, cation exchange capacity was higher than 20 cmol(+) $kg^{-1}$. For uncultivated soil, the values of exchangeable sodium percent and calcium saturation percent were higher than 100%. The major cation of soil saturation paste extracts was Na regardless of land use type. Based on electrical conductivity and sodium adsorption ratio of saturation paste extracts, uncultivated soil was classified as saline-sodic soil and cultivated soil was classified as sodic or normal soil. The maximum adsorption capacity of phosphorus calculated by Langmuir isotherm ranged from 406 to 521 mg P ,$kg^{-1}$. The constraints of soils in Baicheng regions for agricultural cops werw high salt concentration, unfavorable soil chemical composition such as low concentration of available phosphorous, and poor drainage due to soil dispersion by high Na concentration. Therefore, the soil in Baicheng region, need the application of phosphorus fertilizer to increase the soil fertility and the proper soil management to improve the soil physical property especially permeability and soil structure.

  • PDF

An Application of Design of Experiments for Optimization of MOF-235 Synthesis for Acetylene Adsorption Process (아세틸렌 흡착공정용 MOF-235 합성 최적화를 위한 실험 계획법 적용)

  • Cho, Hyungmin;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.377-382
    • /
    • 2020
  • A sequential design of experiments was employed to optimize MOF-235 synthesis for acetylene adsorption process. Two experimental designs were applied: a two-level factorial design for screening and a central composite design, one of response surface methodologies (RSM). In this study, 23 factorial design of experiment was used to evaluate the effect of parameters of synthesis temperature and time, and also mixing speed on crystallinity of MOF-235. Experiments were conducted 16 times follwing MINITAB 19 design software for MOF-235 synthesis. Half-normal, pareto, residual, main and interaction effects were drawn based on the XRD results. The analysis of variance (ANOVA) of test results depicts that the synthesis temperature and time have significant effects on the crystallinity of MOF-235 (response variable). After screening, a central composite design was performed to optimize the acetylene adsorption capacity of MOF-235 based on synthesis conditions. From nine runs designed by MINITAB 19, the result was calculated using the second order model equation. It was estimated that the maximum adsorption capacity (18.7 mmol/g) was observed for MOF-235 synthesized at optimum conditions of 86.3 ℃ and 28.7 h.

Biofilter Model for Robust Biofilter Design: 2. Dynamic Biofilter Model (강인한 바이오필터설계를 위한 바이오필터모델: 2. 동적 바이오필터모델)

  • Lee, Eun Ju;Song, Hae Jin;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.155-161
    • /
    • 2012
  • A dynamic biofilter model was suggested to integrate the effect of biofilter-medium adsorption capacity on the removal efficiency of volatile organic compound (VOC) contained in waste air. In particular, the suggested biofilter model is composed of four components such as biofilm, gas phase, sorption volume and adsorption phase and is capable of predicting the unsteady behavior of biofilter-operation. The process-lumping model previously suggested was limited in the application for the treatment of waste air since it was derived under the assumption that the adsorbed amount of VOC equilibrated with biofilter-media would be proportional to the concentration of dissolved VOC in the sorption volume of biofilter-media. Therefore a Freundlich adsorption isotherm was integrated into a robust biofilter process-lumping model applicable to a wide range of VOC concentration. The values of model parameters related to biofilter-medium adsorption were obtained from the dynamic adsorption column experiments in the preceding article and literature survey. Furthermore a separate biofilter experiment was conducted to treat waste air containing ethanol and the experimental result was compared with the model predictions with various values of Thiele modulus (${\phi}$). The obtained value of Thiele modulus (${\phi}$) was close to 0.03.