Removal Characteristics of Chloral Hydrate by Activated Carbons and Biofiltration

활성탄과 생물여과 공정에서의 Chloral hydrate 제거 특성

  • Bae, Sang-Dae (Department of Environmental Engineering, Silla University) ;
  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter) ;
  • Jung, Chul-Woo (Ulsan Regional Innovation Agency, Ulsan Industry Promotion Techno Park)
  • 배상대 (신라대학교 환경공학과) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 정철우 (울산산업진흥TP 전략산업기획단)
  • Published : 2008.02.29

Abstract

Coal-, coconut- and wood-based activated carbons and anthracite were tested to evaluate adsorption and biodegradation performances of chloral hydrate. In the early stage of the operation, the adsorption was the main mechanism for the removal of chloral hydrate, however as increasing populations of attached bacteria, the bacteria played a major role in removing chloral hydrate in the activated carbon and anthracite biofilter. It was also investigated that chloral hydrate was readily subjected to biodegrade. The coal- and coconut-based activated carbons were found to be most effective adsorbents in adsorption of chloral hydrate. Highest populations and activity of attached bacteria were shown in the coal-based activated carbon. The populations and activity of attached bacteria decreased in the order: coconut-based activated carbon > wood-based activated carbon > anthracite. The attached bacteria was inhibited in the removal of chloral hydrate at temperatures below 10$^{\circ}C$. It was more active at higher water temperatures(20$^{\circ}C$ <) but less active at lower water temperature(10$^{\circ}C$>). The removal efficiencies of chloral hydrate obtained by using four different adsorbents were directly related to the water temperatures. Water temperature was the most important factor for removal of chloral hydrate in the anthracite biofilter because the removal of chloral hydrate depended mainly on biodegradation. Therefore, the main removal mechanism of chloral hydrate by applying activated carbon was both adsorption and biodegradation by the attached bacteria. The observation suggests that the application of coalbased activated carbon to the water treatment should be the best for the removal of chloral hydrate.

본 연구에서는 석탄계, 야자계, 목탄계 활성탄과 흡착능이 없는 안트라사이트를 이용하여 클로랄하이드레이트에 대한 흡착 및 생물분해 특성을 평가하였다. 활성탄 공정에서 클로랄하이드레이트의 제거기작은 운전초기에는 흡착이 높은 비중을 차지하나 부착미생물의 활성이 증진되면서 부착미생물에 의한 생분해와 흡착에 의해 제거되었으며, 클로랄하이드레이트는 생분해능이 큰 물질들로 조사되었다. 입상활성탄 재질별 클로랄하이드레이트의 제거 특성은 석탄계와 야자계 활성탄에서 제거율이 높았고, 목탄계는 상대적으로 낮은 제거능을 보였으며, 안트라사이트 biofilter에서 가장 낮은 제거능을 보였다. 활성탄 재질별 부착 미생물의 생체량과 활성도는 석탄계가 가장 높았고, 야자계, 목탄계, 안트라사이트 순으로 나타났으며, 수온 변화에 따른 클로랄하이드레이트의 제거 특성은 수온이 10$^{\circ}C$ 이하로 저하될 경우 부착 bacteria의 생체량과 활성도 감소로 제거율이 감소하였다. 안트라사이트를 이용한 생물여과 공정은 수온의 변화에 아주 민감하게 변하는 양상을 나타내었으며, 이는 부착 bacteria에 의한 직접적인 생물분해가 주 제거 메카니즘이기 때문인 것으로 나타났다. 클로랄하이드레이트의 제거시 유입농도가 높은 경우에는 수온의 영향이 매우 중요하며, 흡착능이 소진된 활성탄이나 흡착능이 없는 여재를 사용한 생물여과 공정에서는 수온이 낮은 동절기에는 클로랄하이드레이트의 유출 가능성이 있었다.

Keywords

References

  1. Zavaleta, J. O., Hauchman, F. S., and Cox, M. W., "Epidemiology and toxicology of disinfection by-products," Formation and Control of Disinfection By-Products in Drinking Water, Singer, P. C.(Ed), American Water Works Association, Denver, pp. 95-117(1999)
  2. Craun, G. F., Bull, R. J., Clark, R. M., Doull, J., Grabow, W., Marsh, G. M., Okun, D. A., Regli, S., Sobsey, M. D., and Symons, J. M., "Balancing chemical and microbial risks of drinking water disinfection. part I. benefits and potential risks," Water Supply: Research & Technology-Aqua, 43, 192-199(1994)
  3. Fawell, J., Robinson, D., Bull, R., Birnbaum, L., Boorman, G., Butterworth, B., Daniel, P., Galal-Gorchev, H., Hauchman, F., Julkunen, P., Klaassen, C., Krasner, S., Orme-Zavaleta, J., Rief, J., and Tardiff, R., "Disinfection by-products in drinking water: critical issues in health effects research," Environ. Health Perspect., 105(1), (1997)
  4. Hargette, P., Budd, G., and Cline, M., "Strategies at Charleston CPW for compliance with DBP regulations," Proceedings of AWWA 2004 Annual Conference, June 13-17, Orlando, Florida(2004)
  5. Richardson, S. D., "Disinfection by-products and other emerging contaminants in drinking water," Trends in Analytical Chemistry, 22(10), 666-684(2003) https://doi.org/10.1016/S0165-9936(03)01003-3
  6. Le Cloirec, C. and Martin, G., "Evolution of amino acids in water treatment plants and the effect of chlorination on amino acids," Water Chlorination: Chemistry, Environmental Impact and Health Effects, Jolly, R. L., Bull, R. J., Davies, W. P., Katz, S., Roberts, Jr, M. H. and Jacobs, V. A.(Eds), Vol. 5, Lewis Publishers, Chelsea, Michigan(1984)
  7. Trehy, M. L., Yost, R. A., and Miles, C. J., "Amino acids as model compounds for halogenated by-products formed on chlorination of natural waters," Biohazards of Drinking Water Treatment, Lewis Publishers, Chelsea, Michigan, pp. 133-140(1989)
  8. Barrott, L., "Chloral hydrate: formation and removal by drinking water treatment," J. Water Supply Research & Technology-AQUA, 53(6), 381-390(2004) https://doi.org/10.2166/aqua.2004.0030
  9. Reckhow, D. A. and Singer, P. C., "Mechanisms of organic halide formation during fulvic acid chlorination and implications with respect to preozonation," Water Chlorination: Chemistry, Environmental Impact and Health Effects, Jolly, R. L., Bull, R. J., Davies, W. P., Katz, S., Roberts, Jr, M. H. and Jacobs, V. A.(Eds), Vol. 5, Lewis Publishers, Chelsea, Michigan(1984)
  10. Keith, L. H., Garrison, A. W., Allen, F. R., Carter, M. H., Floyd, T. L., Pope, J. D., and Thruston, Jr, A. D., "Identification of organic compounds in drinking water from thirteen US cities," Identification and Analysis of Organic Pollutants in Water, Keith, L. H.(Ed), Ann Arbor Science Publishers, Ann Arbor, Michigan, pp. 329-373 (1976)
  11. Miller, J. W. and Uden, P. C., "Characterization of nonvolatile aqueous chlorination products of humic substances," Environ. Sci. Technol., 17(3), 150-157(1983) https://doi.org/10.1021/es00109a006
  12. 환경부, "먹는물 수질기준 및 검사 등에 관한 규칙," 먹는물 관리법(2003)
  13. Yavich, A. A. and Masten, S. J., "Use of ozonation and FBT to control THM precursors," J. AWWA, 95(4), 159-171(2003) https://doi.org/10.1002/j.1551-8833.2003.tb10342.x
  14. Page, D. W., van Leeuwen, J. A., Spark, K. M., Drikas, M, Withers, N., and Mulcahy, D. E., "Effect of alum treatment on the trihalomethane formation and bacterial regrowth potential of natural and synthetic waters," Water Res., 36, 4884-4892(2002) https://doi.org/10.1016/S0043-1354(02)00218-X
  15. Vel Leitner, N. K., De Laat, J., Dorè, M., and Suty, H., "The use of $ClO_2$ in drinking water treatment: formation and control of inorganic by-products($ClO_2^-,\;ClO_3^-$)," Disinfection By-products in Water Treatment: the Chemistry of Their Formation and Control, Minear, R. A. and Amy, G. L(Eds), CRC Press, Boca Raton, pp. 393-407(1996)
  16. Reckhow, D. A., "Control of disinfection by-product formation using ozone," Formation and Control of Disinfection By-Products in Drinking Water, Singer, P. C.(Ed), American Water Works Association, Denver, pp. 179-204(1999)
  17. Tung, H. H., Unz, R. F., and Xie, Y. F., "The effects of adsorption isotherm testing conditions on GAC bed life estimation," Proceedings of 2003 AWWA Annual Conference, June 15-19, Anaheim, California(2003)
  18. Wu, H. and Xie, Y. F., "Effects of empty bed contact time and temperature on the removal of haloacetic acids using biologically activated carbon," Proceedings of 2003 AWWA Annual Conference, June 15-19, Anaheim, California(2003)
  19. Speth, T. F. and Miltner, R. J., "Adsorption capacity of GAC for synthetic organics," J. AWWA, 90(4), 171-174(1998) https://doi.org/10.1002/j.1551-8833.1998.tb08420.x
  20. 손희종, 노재순, 배석문, 김상구, 강임석, "활성탄 공정에서의 염소 소독부산물 제거특성," 대한환경공학회지, 27(7), 762-770(2005)
  21. 서인숙, 손희종, 최영익, 안욱성, 박청길, "활성탄 공정과 생물여과 공정에서 유기질소계 염소 소독부산물 제거특성," 대한환경공학회지, 29(2), 184-191(2007)
  22. 한국표준협회, KS 활성탄 시험방법, KS M 1802(1998)
  23. 환경부, 수처리제의 기준과 규격 및 표시기준, 환경부 고시 제1999-173호(1999)
  24. Snoeyink, V. L., Adsorption of organic compounds, In Water Quality and Treatment: a Handbook of Community Water Supplies, 4th Ed., Edited by Pontius, F. W., McGraw-Hill Inc., New York, pp. 781-855(1990)
  25. US EPA Method 551.1, Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid-liquid Extraction and Gas Chromatography with Electron Capture Detection, National Exposure Research Laboratory, Cincinnati, OHIO 45268(1995)
  26. 長澤, "粒狀活性炭表層のおける微生物の動向," 第41回 日本水道硏究發表會 發表論文集, pp. 1-3(1990)
  27. APHA, AWWA, WEF, "Heterotrophic plate count," Standard Methods for the Examination of Water and Wastewater, Eaton, A. D., Clesceri, L. S. and Greenberg, A. E.(Eds), APHA, AWWA, WEF, Washington DC, 19th ED, pp. 9-31-9-35(1995)
  28. Fuhrman, J. A. and Azam, F., "Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results," Mar. Biol., 66, 109-120(1982) https://doi.org/10.1007/BF00397184
  29. Parsons, T. R., Maita, Y., and Lalli, C. M., A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, New York(1984)
  30. Bell, R. T., Ahlgren, G. M., and Ahlgren, I., "Estimating bacterioplankton production by the [$^3H$]thymidine incorporation in a eutrophic Swedish Lake," Appl. Environ. Microbiol., 45, 1709-1721(1983)
  31. 손희종, 박홍기, 이수애, 정은영, 정철우, "생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성," 대한환경공학회지, 27(12), 1311-1320(2005)