DOI QR코드

DOI QR Code

An Application of Design of Experiments for Optimization of MOF-235 Synthesis for Acetylene Adsorption Process

아세틸렌 흡착공정용 MOF-235 합성 최적화를 위한 실험 계획법 적용

  • Cho, Hyungmin (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
  • 조형민 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Received : 2020.06.03
  • Accepted : 2020.06.22
  • Published : 2020.08.10

Abstract

A sequential design of experiments was employed to optimize MOF-235 synthesis for acetylene adsorption process. Two experimental designs were applied: a two-level factorial design for screening and a central composite design, one of response surface methodologies (RSM). In this study, 23 factorial design of experiment was used to evaluate the effect of parameters of synthesis temperature and time, and also mixing speed on crystallinity of MOF-235. Experiments were conducted 16 times follwing MINITAB 19 design software for MOF-235 synthesis. Half-normal, pareto, residual, main and interaction effects were drawn based on the XRD results. The analysis of variance (ANOVA) of test results depicts that the synthesis temperature and time have significant effects on the crystallinity of MOF-235 (response variable). After screening, a central composite design was performed to optimize the acetylene adsorption capacity of MOF-235 based on synthesis conditions. From nine runs designed by MINITAB 19, the result was calculated using the second order model equation. It was estimated that the maximum adsorption capacity (18.7 mmol/g) was observed for MOF-235 synthesized at optimum conditions of 86.3 ℃ and 28.7 h.

아세틸렌 흡착 공정을 위한 MOF-235 합성의 최적화를 위해 순차적인 실험 계획법을 사용하였다. 이를 위하여 두 가지 실험 계획법이 적용되었는데, screening을 위한 2단계 요인 설계와 반응표면 분석법 중에 하나인 중심합성 계획이다. 본 연구에서는 23 요인 설계법을 이용하여 MOF-235의 결정도에 대한 합성 온도, 합성 시간 및 혼합 속도의 영향을 평가하였다. MINITAB 19 소프트웨어에 따라 설계된 16번의 MOF-235 합성 실험을 수행하였다. XRD 분석을 바탕으로 Half-Normal, Pareto, Residual, Main 및 Interaction 효과를 구하였다. 시험 결과의 분산 분석(ANOVA)을 통해 합성 온도 및 시간이 MOF-235의 결정도에 중요한 영향을 미친다는 것을 분석하였다. 이후, 중심합성 계획법을 이용하여 아세틸렌 흡착성능 최적화를 MOF-235의 선정된 합성 조건을 바탕으로 수행하였다. 설계된 9번의 흡착실험을 통해 도출된 결과를 2차 모델 방정식을 이용하여 계산하였다. 아세틸렌의 최대 흡착 용량(18.7 mmol/g)은 86.3 ℃ 및 28.7 h의 최적의 조건에서 합성된 MOF-235에서 얻을 수 있다고 예측하였다.

Keywords

References

  1. R. A. Fisher, The Design of Experiments, 8-58, 8th ed., Hafner Publishing Company, New York, USA (1966).
  2. R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural, and Medical Research, 10-30, 4th ed., Oliver and Boyd, Edinburgh, UK (1953).
  3. G. E. P. Box and K. G. Wilson, On the Experimental Attainment of Optimum Conditions, J. R. Stat. Soc., 13, 1-45 (1951). https://doi.org/10.1111/j.1467-9884.1963.tb01587.x
  4. G. Taguchi and Y. Wu, Introduction to Off-Line Quality Control, 5-50, Central Japan Quality Control Association, Nagoya, Japan (1985).
  5. R. N. Kackar, Off-Line Quality Control, Parameter Design, and the Taguchi Method, J. Quality Tech., 17, 176-188 (1985). https://doi.org/10.1080/00224065.1985.11978964
  6. G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost, 5-50, 1st ed., UNIPUB, White Plains, New York, USA (1987).
  7. K. Papadopoulou, V. Dimitropoulos, and F. Rigas, Assessment of Pleurotus ostreatus mediated degradation of agro-residues by using design of experiments methodologies, Environ. Prog. Sustain. Energy, 34, 1705-1713 (2015). https://doi.org/10.1002/ep.12176
  8. S. Ranganathan, J. Tebbe, L. O. Wiemann, and V. Sieber, Optimization of the lipase mediated epoxidation of monoterpenesusing the design of experiments-Taguchi method, Process Biochem., 51, 1479-1485 (2016). https://doi.org/10.1016/j.procbio.2016.07.005
  9. D. Fissore, R. Pisano, and A. A. Barresi, Process analytical technology for monitoring pharmaceuticals freeze-drying-A comprehensive review, Drying Technol., 36, 1839-1865 (2008).
  10. L. L. Simon, E. Simone, and K. A. Oucherif, Crystallization process monitoring and control using process analytical technology, Comput. Aided Chem. Eng., 41, 215-242 (2018). https://doi.org/10.1016/B978-0-444-63963-9.00009-9
  11. M. Anbia, V. Hoseini, and S. Sheykhi, Sorption of methane, hydrogen and carbon dioxide on metal-organic framework, iron terephthalate (MOF-235), J. Ind. Eng. Chem., 18, 1149-1152 (2012). https://doi.org/10.1016/j.jiec.2012.01.014
  12. E. Haque, J. W. Jun, and S. H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235), J. Hazard. Mater., 185, 507-511 (2011). https://doi.org/10.1016/j.jhazmat.2010.09.035
  13. N. T. Tran, D. Kim, K. S. Yoo, and J. Kim, Synthesis of Cu-doped MOF‐235 for the degradation of methylene blue under visible light irradiation, Bull. Korean Chem. Soc., 40, 112-117 (2019). https://doi.org/10.1002/bkcs.11650
  14. X. Tao, C. Sun, Y. Han, L. Huang, and D. Xu, The plasma assisted preparation of Fe-MOFs with high adsorption capacity, Cryst. Eng. Comm., 21, 2541-2550 (2019). https://doi.org/10.1039/C9CE00015A
  15. M. Chung and K. S. Yoo, Optimization of MOF-235 synthesis by analysis of statistical design of experiment, Appl. Chem. Eng., 30, 615-619 (2019). https://doi.org/10.14478/ace.2019.1066
  16. V. N. Nair and D. Pregibon, Analyzing dispersion effects from replicated factorial experiments, Technometrics, 30, 247-257 (1988). https://doi.org/10.1080/00401706.1988.10488398
  17. R. V. Lenth, Quick and easy analysis of unreplicated factorials, Technometrics, 31, 469-473 (1989). https://doi.org/10.1080/00401706.1989.10488595
  18. G. Pan, The impact of unidentified location effects on dispersion - Effects identification from un replicated factorial designs, Technometrics, 41, 313-326 (1999). https://doi.org/10.1080/00401706.1999.10485931
  19. R. L. Plackett and J. P. Burman, The design of optimum multi factorial experiments, Biometrika, 34, 255-272 (1946). https://doi.org/10.1093/biomet/34.3-4.255
  20. M. Khajeh, Response surface modeling of lead pre-concentration from food samples by miniaturized homogeneous liquid-liquid solvent extraction: Box-Behnken design, Food Chem., 129, 1832-1838 (2011). https://doi.org/10.1016/j.foodchem.2011.05.123
  21. H. Rostamian and M. N. Lotfollahi, New functionality for energy parameter of Redlich-Kwong equation of state for density calculation of pure carbon dioxide and ethane in liquid, vapor and supercritical phases, Period. Polytech. Chem., 60, 93-97 (2016).
  22. B. LotfizadehDehkordi, A. Ghadimi, and H. S. C. Metselaar, Box-Behnken experimental design for investigation of stability and thermal conductivity of $TiO_2$ nanofluids, J. Nanopart. Res., 15, 1-9 (2013).